Minnesota Research Data Center
明尼苏达研究数据中心
基本信息
- 批准号:0851417
- 负责人:
- 金额:$ 29.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SES-0851417Catherine FitchLynn A BlewettMichael DavernThomas HomesSteven RugglesThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This grant establishes a Census Bureau Research Data Center (RDC) at the University of Minnesota. The goals of the Minnesota RDC are twofold. First, the RDC will help Minnesota researchers, working in collaboration with the Census Bureau and the National Center for Health Statistics, to support and improve basic data infrastructure for economic, demographic, and health research. Second, the RDC will stimulate new academic research that capitalizes on powerful restricted-access datasets to advance understanding of the sources and consequences of change in American society. The Minnesota RDC will be housed in the Minnesota Population Center (MPC), an organization with a tradition of collaboration with the Census Bureau on projects to improve and disseminate Census data products. The Minnesota RDC will serve researchers from a broad range of academic disciplines, but will have particular strengths in demography and public health. Minnesota has outstanding researchers from social science and policy departments who will exploit newly-available demographic data to study topics such as marriage, migration, and family change. The University's top-ranked School of Public Health has unusual strength in large-scale data analysis and improvement and the nearby Mayo Clinic is developing new programs focusing on health data. Accordingly, a large pool of nationally-recognized investigators will take advantage of the recent agreement between the Census Bureau and NCHS and the Agency for Healthcare Research and Quality (AHRQ). The RDC will also serve traditional RDC researchers; economists from the distinguished departments of Economics, Applied Economics, and Industrial Relations--as well as the Minneapolis Federal Reserve Bank--will focus on analysis of economic microdata. The availability of an RDC at the University of Minnesota will stimulate original and creative research in an array of academic fields such as sociology, economics, public affairs, and epidemiology. The restricted decennial and economic census data provide powerful resources for studying the long-run restructuring of the American population and economy. Social scientists at the University of Minnesota will be able to address simultaneously the broad sweep of time and the detail of spatial organization. Access to the internal NCHS and AHRQ data will result in a substantial body of new scientific and policy-relevant research into health behavior and disparities, access to and use of medical care, population aging, progress toward public health goals, and many other topics. Broader Impacts: Because of MPC's history of collaboration with the Census Bureau and NCHS on large-scale data infrastructure projects, the Minnesota RDC will be uniquely positioned to benefit the entire RDC program and to assist the statistical agencies with data improvement projects. The Minnesota RDC will help users across the entire RDC network efficiently use restricted population and health data files, some of which Minnesota investigators helped to create. MPC researchers will continue collaborating with the Census Bureau and NCHS on improving restricted and public-use data and documentation. All RDC projects using Census Bureau restricted data will benefit the Census Bureau by contributing knowledge necessary to improve data collection, processing and dissemination. One of the most important reasons for establishing an RDC at the University of Minnesota is to make this resource available to graduate students. Many students will be trained in the process of using the RDC--learning how to write successful research proposals, properly safeguard private data, and efficiently analyze the RDC data--by working with faculty members. Students from the University will also have free access to the RDC to pursue their own research projects.
SES-0851417 Catherine FitchLynn A BlewettMichael DavernThomas HomesSteven Ruggles该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该拨款在明尼苏达大学建立了人口普查局研究数据中心(RDC)。明尼苏达州RDC的目标是双重的。首先,RDC将帮助明尼苏达州的研究人员与人口普查局和国家卫生统计中心合作,支持和改善经济,人口和健康研究的基础数据基础设施。其次,RDC将刺激新的学术研究,利用强大的限制访问数据集,以促进对美国社会变化的来源和后果的理解。 明尼苏达州RDC将设在明尼苏达州人口中心(MPC),这是一个与人口普查局合作的传统组织,旨在改善和传播人口普查数据产品。明尼苏达州RDC将为来自广泛学科的研究人员提供服务,但在人口统计学和公共卫生方面具有特殊优势。明尼苏达州拥有来自社会科学和政策部门的杰出研究人员,他们将利用新获得的人口数据来研究婚姻,移民和家庭变化等主题。该大学排名第一的公共卫生学院在大规模数据分析和改进方面具有不同寻常的实力,附近的马约诊所正在开发专注于健康数据的新项目。因此,大量国家认可的调查人员将利用人口普查局与NCHS和医疗保健研究和质量机构(AHRQ)之间最近达成的协议。RDC还将为传统的RDC研究人员提供服务;来自经济学,应用经济学和工业关系杰出部门的经济学家-以及明尼阿波利斯联邦储备银行-将专注于经济微观数据的分析。在明尼苏达大学的RDC的可用性将刺激原始和创造性的研究在一系列学术领域,如社会学,经济学,公共事务和流行病学。十年一次的经济普查数据为研究美国人口和经济的长期结构调整提供了强有力的资源。明尼苏达大学的社会科学家将能够同时解决时间的广泛影响和空间组织的细节。访问内部NCHS和AHRQ数据将导致大量新的科学和政策相关研究,涉及健康行为和差异,获得和使用医疗保健,人口老龄化,公共卫生目标的进展以及许多其他主题。更广泛的影响:由于MPC与人口普查局和NCHS在大规模数据基础设施项目上的合作历史,明尼苏达州RDC将处于独特的地位,使整个RDC计划受益,并协助统计机构进行数据改进项目。明尼苏达州RDC将帮助整个RDC网络的用户有效地使用受限制的人口和健康数据文件,其中一些是明尼苏达州调查人员帮助创建的。MPC研究人员将继续与人口普查局和NCHS合作,改进限制和公共使用的数据和文件。所有使用人口普查局限制性数据的RDC项目都将有利于人口普查局,为改进数据收集、处理和传播提供必要的知识。在明尼苏达大学建立RDC的最重要的原因之一是使研究生可以获得这些资源。许多学生将在使用RDC的过程中接受培训-学习如何编写成功的研究提案,正确保护私人数据,并有效地分析RDC数据-通过与教师合作。大学的学生也可以自由进入RDC进行自己的研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Fitch其他文献
Catherine Fitch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Fitch', 18)}}的其他基金
RCN: Building an Interdisciplinary Community of Big Microdata Researchers
RCN:建立大微数据研究人员的跨学科社区
- 批准号:
2020002 - 财政年份:2020
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Marriage and Economic Opportunity in the U.S.
美国的婚姻和经济机会
- 批准号:
0617560 - 财政年份:2006
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
- 批准号:
2346636 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
- 批准号:
2341622 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325835 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant