International Research Fellowship Program: Permutation Groups and Model Theory
国际研究奖学金计划:排列群和模型理论
基本信息
- 批准号:0853293
- 负责人:
- 金额:$ 13.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0853293BaginskiThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The International Research Fellowship Program enables U.S. scientists and engineers to conduct nine to twenty-four months of research abroad. The program's awards provide opportunities for joint research, and the use of unique or complementary facilities, expertise and experimental conditions abroad.This award will support a twenty-four-month research fellowship by Dr. Paul Baginski to work with Dr. Tuna Altinel at the University of Lyon in France.Permutation groups provide the mathematical abstraction of the symmetries of a specified object. While finite permutation groups have long been examined, the current project uses model-theoretic methods to extend this mathematical theory to several classes of infinite permutation groups with finitary properties. In particular, the project focuses on the strong model-theoretic properties of finite Morley rank (fMR) and countable categoricity. In the case of finite groups, many insights about permutation groups occurred toward the end of the classification program for finite simple groups. In the infinite case, model theorists have pursued an analogous classification program for simple groups of finite Morley rank for nearly thirty years. The current status of the classification prompted two prominent researchers, Alexandre Borovik and Gregory Cherlin, to signal in 2007 that significant progress on infinite permutation groups of finite Morley rank is imminent. The proposed project has begun by addressing one of Borovik and Cherlin?s questions concerning the fundamental model theoretic interactions between the permutation group and the set upon which it acts, equipped with a relational ?footprint? of the group action. The investigation proceeds in the fMR case toward analysis of primitive permutation groups, generic n-transitivity, and other related problems. In parallel, the project considers these same problems, but with countable categoricity in place of finite Morley rank. Whereas groups of fMR generally resemble algebraic groups over algebraically closed fields, countably categorical groups tend toward infinite-dimensional vector spaces over finite fields. Taken together, groups with the properties of finite Morley rank or countable categoricity encompass many familiar examples of infinite permutation groups which appear across mathematics. Advances in the fMR or countably categorical settings can be expected to have broad applicability within model theory and other fields such as number theory, algebraic graph theory and abstract geometry. The project features international cooperation, with involvement from researchers from the USA, France, the United Kingdom, Germany, and elsewhere, and the results would have rapid and wide circulation. Furthermore, implications of this research could easily reach beyond mathematics, since permutation groups are used in the applied study of symmetries of many objects, from crystals to the arithmetic curves that underlie much of modern cryptography. Due to their size, some of these objects are effectively ?infinite?. For example, the world-wide-web, when considered as a set of points (webpages) connected by lines (hyperlinks), forms a nearly impossible system for full-scale analysis. While computationally infinite, such objects are naturally finite. In this case, it may be fruitful to analyze their symmetries using infinite permutation groups with finitary properties, such as the ones featured in this research.
0853293 Baginski该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。国际研究奖学金计划使美国科学家和工程师能够在国外进行9到24个月的研究。 该计划的奖项提供了合作研究的机会,以及使用独特或互补的设施,专业知识和国外的实验条件。该奖项将支持保罗·巴金斯基博士与法国里昂大学的Tuna Altinel博士合作进行为期24个月的研究奖学金。排列群提供了特定对象对称性的数学抽象。虽然有限置换群已经被研究了很长时间,但目前的项目使用模型论方法将这一数学理论扩展到几类具有有限性质的无限置换群。特别是,该项目侧重于有限莫利秩(fMR)和可数范畴的强模型理论属性。在有限群的情况下,许多关于置换群的见解出现在有限单群分类程序的末尾。在无限情况下,模型理论家们对有限莫利秩的单群进行了类似的分类,已经有将近30年了。分类的现状促使两位著名的研究者亚历山大·博罗维克(Alexandre Borovik)和格雷戈里·切尔林(Gregory Cherlin)在2007年发出信号,表明有限莫利秩的无限置换群即将取得重大进展。拟议的项目已经开始解决博罗维克和切尔林之一?的问题有关的基本模型理论之间的相互作用的置换群和设置后,它的行为,配备了一个关系?脚印?的集体行动。调查进行fMR情况下对分析的原始置换群,一般的n-传递性,和其他相关问题。平行地,该项目考虑了这些相同的问题,但用可数范畴代替有限的莫利秩。fMR群一般类似于代数闭域上的代数群,而可数范畴群则倾向于有限域上的无限维向量空间。总的来说,具有有限莫利秩或可数范畴性质的群包含了许多常见的出现在数学中的无限置换群的例子。在fMR或可数范畴设置的进展可以预期在模型论和其他领域,如数论,代数图论和抽象几何中具有广泛的适用性。该项目以国际合作为特色,有来自美国、法国、英国、德国和其他地方的研究人员参与,其结果将迅速广泛传播。此外,这项研究的意义可以很容易地超越数学,因为置换群被用于许多对象的对称性的应用研究,从晶体到现代密码学的基础算术曲线。由于它们的大小,其中一些物体是有效的?无限?例如,万维网,当被认为是一组由线(超链接)连接的点(网页)时,形成了一个几乎不可能进行全面分析的系统。虽然计算上是无限的,但这些对象自然是有限的。在这种情况下,它可能是富有成效的分析他们的对称性使用有限性质的无限置换群,如在本研究中的特色。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Baginski其他文献
Asymptotic Elasticity in Atomic Monoids
- DOI:
10.1007/s00233-005-0544-7 - 发表时间:
2006-03-12 - 期刊:
- 影响因子:0.700
- 作者:
Paul Baginski;Scott T. Chapman;Matthew T. Holden;Terri A. Moore - 通讯作者:
Terri A. Moore
Elastic Properties and Prime Elements
- DOI:
10.1007/s00025-006-0219-z - 发表时间:
2006-12-05 - 期刊:
- 影响因子:1.200
- 作者:
Paul Baginski;Scott T. Chapman;Christopher Crutchfield;K. Grace Kennedy;Matthew Wright - 通讯作者:
Matthew Wright
Paul Baginski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Baginski', 18)}}的其他基金
Conference: Fairfield Algebra Regional Meeting (FARM)
会议:费尔菲尔德代数区域会议(FARM)
- 批准号:
2333966 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
International Research Fellowship Program: Modeling Alpine Population Histories with Approximate Bayesian Computation
国际研究奖学金计划:用近似贝叶斯计算模拟高山人口历史
- 批准号:
0965038 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Modeling the Morphodynamics of Bedrock Meandering
国际研究奖学金计划:基岩蜿蜒形态动力学建模
- 批准号:
0965064 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Aeroacoustic Model for an Elastic Lifting Surface with a Soft, Sound Absorbant Coating: The Silent Flight of Owls
国际研究奖学金计划:具有柔软吸音涂层的弹性升力表面的气动声学模型:猫头鹰的无声飞行
- 批准号:
0965248 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Towards Conservation and Sustainable Use: Genetic Diversity and Reproductive Mode of the Endangered Himalayan Fungus O. sinensis
国际研究奖学金计划:走向保护和可持续利用:濒危喜马拉雅真菌中华蘑菇的遗传多样性和繁殖模式
- 批准号:
1019044 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Using Kinematics to Identify Juvenile-Aged Cool Stars in Nearby Moving Groups.
国际研究奖学金计划:利用运动学识别附近移动星群中的青少年冷恒星。
- 批准号:
0965192 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Population Sex Ratio Bias: Influences of Climate and Consequences for Extinction Risk
国际研究奖学金计划:人口性别比偏差:气候的影响和灭绝风险的后果
- 批准号:
0965096 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Atmospheric Implications of the Temperature-and State-dependent Chemistry of Organic Aerosol
国际研究奖学金计划:有机气溶胶温度和状态依赖性化学的大气影响
- 批准号:
1006117 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Acoustic Perceptual Properties of Suprasegmental Contrast Systems
国际研究奖学金计划:超节段对比系统的声学感知特性
- 批准号:
0965227 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Evolution of Nickel Hyper-accumulation in the Plant genus Stackhousia
国际研究奖学金计划:Stackhousia 植物属镍超积累的演化
- 批准号:
0965674 - 财政年份:2011
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship Award
International Research Fellowship Program: Vulnerability and Resilience of Sponge Populations and their Bacterial Symbionts to Climate Change and Anthropogenic Disturbances
国际研究奖学金计划:海绵种群及其细菌共生体对气候变化和人为干扰的脆弱性和恢复力
- 批准号:
0853089 - 财政年份:2010
- 资助金额:
$ 13.61万 - 项目类别:
Fellowship