Enhanced capillary electrophoretic and hydrodynamic chromatographic separations on microchip devices using a combination of electrokinetic and hydrodynamic flows
利用动电流和流体动力流的组合增强微芯片设备上的毛细管电泳和流体动力色谱分离
基本信息
- 批准号:0854179
- 负责人:
- 金额:$ 25.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0854179DuttaThis NSF award by the Chemical and Biological Separations program supports work by Professor Debashis Dutta at the University of Wyoming to develop micro-/nanofluidic devices that can enhance the resolving power of Capillary Electrophoretic (CE) and Hydrodynamic Chromatographic (HDC) separations using a combination of electrokinetic and pressure-driven flows. In addition, the proposed work will also design a novel HDC separation method for DNA molecules based on their shear-induced migration in a pressure-driven flow field. The development of this method will eliminate the necessity to use analysis columns that have lateral dimensions comparable to the solute diameter in order to realize high-efficiency HDC separations. The Specific Aims described above will be accomplished using micro- and nanofluidic devices developed in the PI's laboratory that can generate a pressure-driven flow on-chip using electrical forces. In the proposed devices, a silicate based sol-gel membrane is used to block electroosmotic flow generated along a channel yielding a pressure-gradient in the system. The resulting pressure-driven flow is then guided to an analysis column to drive or enhance a separation process. It is worth noting that the ability to generate pressure-gradients on-chip in these devices provides a precise and dynamic control over the hydrodynamic flow velocity in the analysis column through minimization of dead volumes. Moreover, because this capability is realized using electrokinetic forces, it allows the generation of pressure-gradients within micro- and nanofluidic networks with equal ease. It is anticipated that the proposed work could also have a broad impact on separations research outside of the CE and the HDC techniques. This is because the micro-pump presented here is easy to fabricate and simple to integrate to micro-/nanofluidic separation systems compared to other designs described in the literature. This aspect of the proposed micro-pump could make it attractive for other laboratories to adopt it for their own research. Further, the ability of the proposed devices to generate hydrodynamic flows in micro- and nanofluidic ducts with equal ease makes it a valuable research tool for not only miniaturizing existing pressure-driven separation methods but also studying new separation schemes that rely on a pressure-driven flow field in micro-/nanochannels. Finally, the proposed work will establish an inexpensive and simple procedure for fabricating low resistance and durable silicate based sol-gel membranes in micro-/nanochannels that can be employed under a wider range of assay conditions compared to polymer based membranes commonly used today.While advances in micro-/nanoscale science are revolutionizing the way we understand our world today, the integration of this knowledge into undergraduate and graduate education has been slow. The problem is particularly prominent in states like Wyoming where the development of high tech industries has been well below the national average. However, with increases in the application of nanoscience and nanotechnology to various sectors of the Wyoming economy there is a growing demand on training future workforce in these scientific areas. As the only four-year college in the State of Wyoming, the University of Wyoming (UW) carries the primary responsibility for providing the required infrastructure to meet these demands. The work described in this proposal will help to address this problem by providing educational and research experience to undergraduate and graduate students in applying nanoscience and nanotechnology to important areas of basic and applied research, such as the specific projects described here for improving the resolving power of CE and HDC methods. Besides training graduate and undergraduate students, the PI proposes three additional educational activities aimed at disseminating the results of the research to a broad range of audiences, as well as directly involving high school students in research activities. This will include incorporating proposed CE and HDC separations methods into a graduate level chemistry course at UW, and initiating a summer research apprentice program for high school students. At the same time, the PI will also develop an outreach program with the Central Wyoming College (CWC) that has about 20% Native American and 80% first-generation college student population to broaden the participation of minorities and underprivileged communities.
0854179 Dutta化学和生物分离计划的NSF奖项支持怀俄明州大学的Debashis Dutta教授开发微/纳流体设备的工作,该设备可以使用电动和压力驱动流的组合来提高毛细管电泳(CE)和流体动力学色谱(HDC)分离的分辨率。此外,本研究还将设计一种基于压力驱动流场中剪切诱导迁移的DNA分子HDC分离新方法。该方法的开发将消除使用具有与溶质直径相当的横向尺寸的分析柱的必要性,以实现高效的HDC分离。上述具体目标将使用PI实验室开发的微流体和纳米流体装置来实现,该装置可以使用电力在芯片上产生压力驱动的流动。在所提出的装置中,使用基于硅酸盐的溶胶-凝胶膜来阻挡沿通道产生的电渗流,所述通道沿着在系统中产生压力梯度。然后将所得的压力驱动流引导至分析柱以驱动或增强分离过程。值得注意的是,在这些装置中在芯片上产生压力梯度的能力通过最小化死体积提供了对分析柱中的流体动力学流速的精确和动态控制。此外,由于这种能力是使用动电力实现的,因此它允许同样容易地在微流体和纳米流体网络内产生压力梯度。预计拟议的工作也可能对CE和HDC技术之外的分离研究产生广泛的影响。这是因为与文献中描述的其他设计相比,这里提出的微泵易于制造并且易于集成到微/纳流体分离系统。所提出的微型泵的这一方面可能会吸引其他实验室将其用于自己的研究。此外,所提出的装置在微米和纳米流体管道中同样容易地产生流体动力学流动的能力使其成为一种有价值的研究工具,不仅用于简化现有的压力驱动分离方法,而且用于研究依赖于微米/纳米通道中的压力驱动流场的新分离方案。最后,拟议的工作将建立一个廉价和简单的程序,用于在微/纳米通道中制造低电阻和耐用的硅酸盐基溶胶-凝胶膜,与当今常用的聚合物基膜相比,该膜可以在更广泛的测定条件下使用。虽然微/纳米科学的进步正在彻底改变我们对当今世界的理解,将这些知识纳入本科和研究生教育的进程缓慢。这个问题在像怀俄明州这样的州尤为突出,因为那里的高科技产业发展一直远低于全国平均水平。然而,随着纳米科学和纳米技术应用于怀俄明州经济的各个部门的增加,对这些科学领域未来劳动力的培训需求不断增长。作为怀俄明州唯一的四年制大学,怀俄明州大学(UW)承担着提供所需基础设施以满足这些需求的主要责任。本提案中描述的工作将有助于解决这个问题,为本科生和研究生提供教育和研究经验,将纳米科学和纳米技术应用于基础和应用研究的重要领域,例如这里描述的提高CE和HDC方法分辨率的具体项目。除了培训研究生和本科生外,PI还提出了三项额外的教育活动,旨在向广泛的受众传播研究成果,并直接让高中生参与研究活动。这将包括将拟议的CE和HDC分离方法纳入UW的研究生水平化学课程,并为高中生启动暑期研究学徒计划。与此同时,PI还将与中央怀俄明州学院(CWC)制定一项外展计划,该学院约有20%的美国原住民和80%的第一代大学生人口,以扩大少数民族和贫困社区的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashis Dutta其他文献
Micro‐ and Nanofluidic Systems for Trace Analysis of Biological Samples
用于生物样品痕量分析的微纳流体系统
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Debashis Dutta - 通讯作者:
Debashis Dutta
Tin Oxide Based Gas Sensor Array in Electronic Nose to Monitor Aroma of Black Tea
电子鼻中基于氧化锡的气体传感器阵列监测红茶香气
- DOI:
10.1166/sl.2016.3558 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Debashis Dutta;Saptarshi Ghosh;M. Narjinary;N. Bhattacharyya;R. Bandyopadhyay - 通讯作者:
R. Bandyopadhyay
Cinnamic acid, a natural plant compound, exhibits neuroprotection in a mouse model of Sandhoff disease via PPARα
肉桂酸是一种天然植物化合物,通过 PPARα 在桑德霍夫病小鼠模型中表现出神经保护作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Raha;Ramesh K Paidi;Debashis Dutta;K. Pahan - 通讯作者:
K. Pahan
Relevance of climatological information on spatial and temporal variability of Indian Summer monsoon rainfall (ISMR) in recent El Niño years and its impact on four important emkharif/em crops over India
近期厄尔尼诺年份印度夏季风降雨(ISMR)的时空变化气候信息的相关性及其对印度四种重要夏季作物的影响
- DOI:
10.1016/j.cliser.2023.100370 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:4.500
- 作者:
N. Subash;Debashis Dutta;P.C. Ghasal;P. Punia;Vinay Prasad Mandal; Brahmadut;Ved Prakash Chaudhary - 通讯作者:
Ved Prakash Chaudhary
Electroosmotic transport through rectangular channels with small zeta potentials.
- DOI:
10.1016/j.jcis.2007.07.022 - 发表时间:
2007-11 - 期刊:
- 影响因子:9.9
- 作者:
Debashis Dutta - 通讯作者:
Debashis Dutta
Debashis Dutta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashis Dutta', 18)}}的其他基金
Development of Sensitive Electrochemiluminescent Immunoassays through Electric Field Assisted Rapid Analyte Capture and Rational Design of the Reporter Catalyst/Reaction System
通过电场辅助快速分析物捕获开发灵敏的电化学发光免疫分析以及报告催化剂/反应系统的合理设计
- 批准号:
1808507 - 财政年份:2018
- 资助金额:
$ 25.42万 - 项目类别:
Continuing Grant
Microfluidic Devices for Enhancing the Sensitivity of ELISA methods
用于增强 ELISA 方法灵敏度的微流体装置
- 批准号:
0964211 - 财政年份:2010
- 资助金额:
$ 25.42万 - 项目类别:
Continuing Grant
相似海外基金
Etiology and pathogenesis of lethal lung developmental disorders in neonates
新生儿致命性肺发育障碍的病因和发病机制
- 批准号:
10660107 - 财政年份:2023
- 资助金额:
$ 25.42万 - 项目类别:
CAREER: Capillary Electrophoretic Mobility Spectrometry - A Solution Phase Analog to Ion Mobility Spectrometry
职业:毛细管电泳迁移谱分析 - 离子迁移谱分析的溶液相模拟
- 批准号:
2054748 - 财政年份:2020
- 资助金额:
$ 25.42万 - 项目类别:
Continuing Grant
CAREER: Capillary Electrophoretic Mobility Spectrometry - A Solution Phase Analog to Ion Mobility Spectrometry
职业:毛细管电泳迁移谱分析 - 离子迁移谱分析的溶液相模拟
- 批准号:
1944902 - 财政年份:2019
- 资助金额:
$ 25.42万 - 项目类别:
Continuing Grant
Chromatographic and Electrophoretic Separations Optimized for Native MS
针对非变性 MS 优化的色谱和电泳分离
- 批准号:
10441402 - 财政年份:2018
- 资助金额:
$ 25.42万 - 项目类别:
Chromatographic and Electrophoretic Separations Optimized for Native MS
针对非变性 MS 优化的色谱和电泳分离
- 批准号:
10192751 - 财政年份:2018
- 资助金额:
$ 25.42万 - 项目类别:
Phospholipid Microscale Glycan Sequencing: Linking Structure to Antibody Function
磷脂微量聚糖测序:将结构与抗体功能联系起来
- 批准号:
9316668 - 财政年份:2015
- 资助金额:
$ 25.42万 - 项目类别:
Phospholipid Microscale Glycan Sequencing: Linking Structure to Antibody Function
磷脂微量聚糖测序:将结构与抗体功能联系起来
- 批准号:
8984617 - 财政年份:2015
- 资助金额:
$ 25.42万 - 项目类别:
Development of extended capillary electrophoretic reactor as novel methodology for kinetic analysis of chemical reactions in solution
开发扩展毛细管电泳反应器作为溶液中化学反应动力学分析的新方法
- 批准号:
26410146 - 财政年份:2014
- 资助金额:
$ 25.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distinct roles of CARP target genes in wound healing
CARP 靶基因在伤口愈合中的独特作用
- 批准号:
8320448 - 财政年份:2012
- 资助金额:
$ 25.42万 - 项目类别: