Multi-Scale Investigation of the Role of Surface-Active Agents in Gas Hydrate Formation Kinetics

表面活性剂在气体水合物形成动力学中作用的多尺度研究

基本信息

  • 批准号:
    0854210
  • 负责人:
  • 金额:
    $ 30.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-02-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

0854210LeeNaturally-occurring methane hydrates have attracted a lot of public attention because they provide enormous potential as a future energy source. Gas storage in the artificial clathrate form is a safe and economical option, safe because the slow release of gas from a container of hydrate reduces explosion hazards, and economical because the gas storage density at 40 bar is comparable to a compressed gas at 200 bar. On the other hand, hydrate plugs formed inside processing lines are a nuisance to gas and oil industries. A critical obstacle to accelerating or retarding hydrate formation is a lack of understanding of the multi-scale interactions between gas hydrate particles and surface-active agents during hydrate formation. To contrast these interactions, methane (CH4) and carbon dioxide (CO2) hydrate systems will be investigated because surface-active agents generally accelerate CH4 hydrate formation but do not affect or even hinder CO2 hydrate formation. Three sequential stages of hydrate formation will be analyzed at different length scales: nucleation (100 nm), initial growth ( 1 ìm), and layered & agglomerated growth ( 1 mm). Differential scanning calorimetry will be used to quantify the effect of surface-active agents on gas hydrate nucleation by statistical measurements of phase-transitions. The different stages of hydrate growth will be investigated by confocal and transmission electron microscopes to understand how surface-active agents differently affect CH4 and CO2 hydrates in terms of hydrate crystal sizes and porosities. Intellectual Merit: An important hypothesis to be tested is that the adsorption of surface-active molecules onto the hydrate surface rather than their micellization in bulk phase is the main reason for accelerating and inhibiting gas hydrate formation. The adsorption mechanisms to be studied as part of the proposed research will lead to a fundamental understanding of the role of surface-active agents in achieving different morphologies and formation rates of gas hydrates in terms of the microscopic observations. Novel neutron scattering studies of the microscopic, interfacial structure will clarify the configuration and functionality of surface-active agents at the oil-hydrate-water interface. This knowledge on hydrate morphologies and interfacial phenomena will be connected to the macroscopic, scale-up experiments of bulk-phase reaction. Broader Impact: The fundamental understanding of the active role of surfactants and hydrate inhibitors enables controlled self-assembly of liquid-phase water molecules into solid gas hydrates. This understanding can be utilized for fast gas hydrate formation needed for safe natural gas storage and CO2 sequestration, while it can also be used for the investigation of an economical alternative to the 1 billion dollars per year spent on methanol as a hydrate inhibitor. This research will be performed by a close collaboration of two institutions, a Ph.D. granting school (CCNY) and an undergraduate liberal-arts college (Hamilton). The PIs will engage underrepresented high school students via existing programs and will actively involve undergraduate students and graduate students via a summer research exchange program between the two institutions. They will investigate gas hydrate-aided CO2 separation from flue gas to incorporate the thermodynamic, kinetic, interfacial science/engineering, and design aspects of this process into the undergraduate and graduate classes at Hamilton and CCNY.This project is supported by two CBET programs: Interfacial Processes and Thermodynamics; Process and Reaction Engineering
[0854210]天然存在的甲烷水合物吸引了大量公众的关注,因为它们作为未来的能源提供了巨大的潜力。人工包合物形式的气体储存是一种安全和经济的选择,安全是因为气体从水合物容器中缓慢释放减少了爆炸危险,经济是因为40 bar的气体储存密度与200 bar的压缩气体相当。另一方面,在加工线内形成的水合物堵塞对天然气和石油工业来说是一个麻烦。加速或延缓水合物形成的一个关键障碍是缺乏对水合物形成过程中天然气水合物颗粒与表面活性剂之间多尺度相互作用的理解。为了对比这些相互作用,我们将研究甲烷(CH4)和二氧化碳(CO2)水合物体系,因为表面活性剂通常会加速CH4水合物的形成,但不会影响甚至阻碍二氧化碳水合物的形成。水合物形成的三个连续阶段将在不同的长度尺度上进行分析:成核(100纳米),初始生长(1 ìm)和层状和凝聚生长(1毫米)。差示扫描量热法将通过对相变的统计测量来量化表面活性剂对天然气水合物成核的影响。通过共聚焦和透射电子显微镜研究水合物生长的不同阶段,了解表面活性剂对CH4和CO2水合物晶体大小和孔隙率的不同影响。智力优势:需要验证的一个重要假设是,表面活性分子在水合物表面的吸附而不是它们在体相中的胶束是加速和抑制天然气水合物形成的主要原因。作为拟议研究的一部分,所研究的吸附机制将导致对表面活性剂在微观观察中实现不同形态和天然气水合物形成速率的作用的基本理解。新的微观界面结构中子散射研究将阐明油-水合物-水界面表面活性剂的构型和功能。这些关于水合物形态和界面现象的知识将与宏观的、体积相反应的放大实验联系起来。更广泛的影响:对表面活性剂和水合物抑制剂的活性作用的基本理解使液相水分子能够控制自组装成固体气体水合物。这种理解可以用于安全天然气储存和二氧化碳封存所需的快速天然气水合物形成,同时也可以用于研究每年花费10亿美元用于甲醇作为水合物抑制剂的经济替代品。这项研究将由两个机构密切合作进行,一个是博士学位授予学校(CCNY),一个是本科文理学院(Hamilton)。pi将通过现有项目吸引代表性不足的高中学生,并通过两所大学之间的夏季研究交流项目积极吸引本科生和研究生。他们将研究天然气水合物辅助二氧化碳从烟道气中分离,将这一过程的热力学、动力学、界面科学/工程和设计方面纳入汉密尔顿大学和纽约大学的本科生和研究生课程。本课题由两个CBET项目资助:界面过程和热力学;过程与反应工程

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jae Lee其他文献

Aging-associated Enzyme Human Clock-1: Substrate- Mediated Reduction of the Diiron Center for 5- Demethoxyubiquinone Hydroxylation Accessed Terms of Use Detailed Terms Aging-associated Enzyme Human Clock-1: Substrate-mediated Reduction of the Diiron Center for 5-demethoxyubiquinone Hydroxylation † N
衰老相关酶 Human Clock-1:底物介导的 Diiron 5-去甲氧基泛醌羟基化中心还原 访问使用条款 详细术语 衰老相关酶 Human Clock-1:底物介导的 Diiron 5-去甲氧基泛醌羟基化中心还原†N
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Citation Lu;Jae Tsai;Ulf;Stephen J Apfel;Lippard;T. Lu;Jae Lee;Ulf‐Peter Apfel;S. Lippard
  • 通讯作者:
    S. Lippard
Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.
灰熊在肥胖时表现出胰岛素敏感性增强,然后在冬眠期间出现可逆的胰岛素抵抗。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    29
  • 作者:
    O. Nelson;H. Jansen;E. Galbreath;Kurt Morgenstern;J. L. Gehring;K. S. Rigano;Jae Lee;Jianhua Gong;A. Shaywitz;C. Vella;C. Robbins;K. Corbit
  • 通讯作者:
    K. Corbit
Racism, self-rated general health status, and health-related quality of life among Black and Asian Americans
黑人和亚裔美国人的种族主义、自评总体健康状况以及与健康相关的生活质量
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiwen Xiao;L. Zeng;Po;Jae Lee;Allen Wu
  • 通讯作者:
    Allen Wu
Assessing the influence of sound parameters on crossmodal cuing in different regions of space.
评估声音参数对不同空间区域的跨模态提示的影响。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Jae Lee;Charles Spence
  • 通讯作者:
    Charles Spence
RNF144A-VRK2-G3BP1 axis regulates stress granule assembly
RNF144A-VRK2-G3BP1 轴调节应激颗粒组装
  • DOI:
    10.1038/s41420-025-02460-6
  • 发表时间:
    2025-04-09
  • 期刊:
  • 影响因子:
    7.000
  • 作者:
    Sung Wook Kim;Jae Lee;Kyung Won Jo;Young-Hun Jeong;Won Sik Shin;Kyong-Tai Kim
  • 通讯作者:
    Kyong-Tai Kim

Jae Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jae Lee', 18)}}的其他基金

SBIR Phase I: Rapid Toxic Alcohols Detection Using On-Chip Biosensor Array for Emergency Care
SBIR 第一阶段:使用片上生物传感器阵列快速检测有毒酒精,用于紧急护理
  • 批准号:
    0611070
  • 财政年份:
    2006
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Smart Disposable Plastic Lab-On-A-Chip for Point-Of-Care Monitoring of Cardiac Markers
SBIR 第一阶段:用于心脏标记物即时监测的智能一次性塑料芯片实验室
  • 批准号:
    0419827
  • 财政年份:
    2004
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Standard Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Standard Grant
Study of electrified post-sunset medium-scale traveling ionospheric disturbances at mid-latitudes: a multi-layer model and a multi-source data investigation
中纬度地区带电日落后中尺度移动电离层扰动研究:多层模型和多源数据调查
  • 批准号:
    23K19066
  • 财政年份:
    2023
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Multi-scale Investigation of the Nitride perovskite LaWN3: towards a functional integration in thin films
氮化物钙钛矿 LaWN3 的多尺度研究:实现薄膜中的功能集成
  • 批准号:
    EP/Y023412/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Fellowship
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    $ 30.41万
  • 项目类别:
In silico multi-scale investigation of lung tissue mechanics and injury
肺组织力学和损伤的计算机多尺度研究
  • 批准号:
    547460-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Multi-Scale Computational Investigation and Design of Metal-Dependent DNAzymes
金属依赖性脱氧核糖核酸酶的多尺度计算研究和设计
  • 批准号:
    570223-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Establishment of multi-scale evaluation method for thermoplastic carbon fiber reinforced plastics and investigation of machinability and free-cutting property
热塑性碳纤维增强塑料多尺度评价方法的建立及切削加工性和易切削性能的研究
  • 批准号:
    22K03840
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-scale Investigation of Sex Differences in Right Ventricular Function via Estrogen-Microtubule Interactions
通过雌激素-微管相互作用对右心室功能性别差异进行多尺度研究
  • 批准号:
    10439249
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
Multi-scale Investigation of Sex Differences in Right Ventricular Function via Estrogen-Microtubule Interactions
通过雌激素-微管相互作用对右心室功能性别差异进行多尺度研究
  • 批准号:
    10614649
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
In silico multi-scale investigation of lung tissue mechanics and injury
肺组织力学和损伤的计算机多尺度研究
  • 批准号:
    547460-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 30.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了