FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
基本信息
- 批准号:0854760
- 负责人:
- 金额:$ 12.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent results of the PI's and the co-PI's suggest a strong connection between the following mathematical objects and constructions: localization theory in representation theory in zero and positive characteristic; derived categories of coherent sheaves on algebraic symplectic varieties; small equivariant quantum cohomology; Casimir-type connections and their monodromy.The goal of the project is to gain a deeper and more detailed understanding of the links between these objects and develop new methods for enumerative algebraic geometry and representation theory based on those links.Representation theory is a branch of mathematics based on the fact that surprisingly rich information about a mathematical or physical object is often hidden in the structure of its symmetries. Throughout some 100 years of its history, a major source of motivation and methods in representation theory has been the interaction with neighboring fields, such as the physics of elementary particles, number theory and geometry. The idea of the present project comes from a new connection of this sort, this time with recent constructions in algebraic geometry motivated by high energy physics. At present this connection has only been observed in particular, though impressive, examples. The aim of the project is to gain a better understanding of the nature of this connection and use this understanding to develop new methods for attacking current problems in several areas of mathematics.
PI和co-PI的最新结果表明了以下数学对象和结构之间的紧密联系:零特征和正特征表示论中的局部化理论,代数辛簇上相干层的导出范畴,小等变量子上同调;卡西米尔该项目的目标是更深入和更详细地了解这些对象之间的联系,并开发新的表示论是数学的一个分支,它基于这样一个事实,即关于一个数学或物理对象的惊人丰富的信息往往隐藏在其对称性的结构中。在其100多年的历史中,表示论的动机和方法的主要来源是与相邻领域的相互作用,如基本粒子物理学,数论和几何学。本项目的想法来自这种新的连接,这一次与最近的建设在代数几何的动机高能物理。目前,这种联系只在一些特别的、但令人印象深刻的例子中被观察到。该项目的目的是更好地理解这种联系的性质,并利用这种理解来开发新的方法来解决数学几个领域的当前问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Braverman其他文献
The Mathematics of Joseph Bernstein
- DOI:
10.1007/s00029-016-0291-5 - 发表时间:
2016-11-04 - 期刊:
- 影响因子:1.200
- 作者:
Roman Bezrukavnikov;Alexander Braverman;Michael Finkelberg;Dennis Gaitsgory - 通讯作者:
Dennis Gaitsgory
Macdonald polynomials, Laumon spaces and perverse coherent sheaves
麦克唐纳多项式、劳蒙空间和反相干滑轮
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Alexander Braverman;Michael Finkelberg;Jun'ichi Shiraishi - 通讯作者:
Jun'ichi Shiraishi
Toward Fast Query Serving in Key-Value Store Migration with Approximate Telemetry
通过近似遥测实现键值存储迁移中的快速查询服务
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexander Braverman;Zaoxing Liu - 通讯作者:
Zaoxing Liu
Bernstein components via the Bernstein center
- DOI:
10.1007/s00029-016-0277-3 - 发表时间:
2016-11-04 - 期刊:
- 影响因子:1.200
- 作者:
Alexander Braverman;David Kazhdan - 通讯作者:
David Kazhdan
Modules over the small quantum group and semi-infinite flag manifold
小量子群和半无限标志流形上的模
- DOI:
10.1007/s00031-005-0401-5 - 发表时间:
2005 - 期刊:
- 影响因子:0.7
- 作者:
Sergey Arkhipov;R. Bezrukavnikov;Alexander Braverman;Dennis Gaitsgory;I. Mirkovic - 通讯作者:
I. Mirkovic
Alexander Braverman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Braverman', 18)}}的其他基金
Representation Theory and Moduli Spaces
表示论和模空间
- 批准号:
1501047 - 财政年份:2015
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
Around Langlands duality for representations of affine Kac-Moody groups
仿射 Kac-Moody 群表示的朗兰兹对偶性
- 批准号:
1200807 - 财政年份:2012
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
Towards Langlands duality for affine Kac-Moody groups
仿射 Kac-Moody 群的朗兰兹对偶性
- 批准号:
0901274 - 财政年份:2009
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
Representations of algebraic groups over 2-dimensional fields, G-bundles on surfaces and mathematical physics
二维场上的代数群、曲面上的 G 丛和数学物理的表示
- 批准号:
0600851 - 财政年份:2006
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
Langlands Duality and Moduli Spaces of G-Bundles
朗兰兹对偶性和 G 丛模空间
- 批准号:
0443206 - 财政年份:2004
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
Langlands Duality and Moduli Spaces of G-Bundles
朗兰兹对偶性和 G 丛模空间
- 批准号:
0300271 - 财政年份:2003
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
Geometric Methods in the Theory of Automorphic Forms
自守形式理论中的几何方法
- 批准号:
0003249 - 财政年份:2000
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 12.79万 - 项目类别:
Continuing Grant