FRG: Collaborative Research: Statistical Inference for High-Dimensional Data: Theory, Methodology and Applications

FRG:协作研究:高维数据的统计推断:理论、方法和应用

基本信息

  • 批准号:
    0854973
  • 负责人:
  • 金额:
    $ 85.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

The analysis of high-dimensional data sets now commonly arising in scientific investigations poses many statistical challenges not present in smaller scale studies. Extracting information with precision from such data is becoming ever more important. This FRG proposal is the PIs' unified effort to respond to the pressing scientific needs. Specifically, The goals are to develop a comprehensive theoretical framework and general methodologies for estimating a large covariance matrix and its functionals and for functional data regression where the predictors and/or the responses involve functional measurements, and to address a wide range of important applications in biomedical studies. The statistical and scientific objectives outlined in this proposal are at the intellectual center of a rapidly growing field in statistics and biostatistics. The new technical tools, inference procedures, and computing algorithms for analyzing high-dimensional data will greatly facilitate scientific investigations in a wide range of disciplines, These fields include astronomy, biology, chemistry, bioinformatics, and particularly in medicine. The proposed efficient analytical procedures hold great potential in deriving more accurate prediction rules for clinical outcomes based on new biological and genetic markers and thus may lead to a better understanding of disease processes. Research results from this proposal will be disseminated through the workshops and seminar series such that the methods would be publicly available to researchers in other disciplines. Software tools developed will be made freely and publicly available as open source code. The proposed project will also bring high-quality training to students and postdoctoral researchers.
高维数据集的分析,现在通常出现在科学调查带来了许多统计上的挑战,不存在于较小规模的研究。从这些数据中精确地提取信息变得越来越重要。这个联邦政府的建议是PI的统一努力,以应对迫切的科学需求。具体来说,我们的目标是开发一个全面的理论框架和一般方法,估计一个大的协方差矩阵和它的功能和功能数据回归的预测和/或响应涉及功能测量,并解决广泛的重要应用在生物医学研究。 本提案中概述的统计和科学目标是统计和生物统计学快速发展领域的知识中心。用于分析高维数据的新技术工具、推理程序和计算算法将极大地促进广泛学科的科学研究,这些领域包括天文学、生物学、化学、生物信息学,特别是医学。所提出的有效的分析程序具有很大的潜力,在推导出更准确的预测规则的基础上,新的生物和遗传标记的临床结果,从而可能会导致更好地了解疾病的过程。这一建议的研究结果将通过讲习班和系列研讨会传播,以便其他学科的研究人员可以公开获得这些方法。所开发的软件工具将作为开放源码免费向公众提供。拟议的项目还将为学生和博士后研究人员提供高质量的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

T. Tony Cai其他文献

On information pooling, adaptability and superefficiency in nonparametric function estimation
  • DOI:
    10.1016/j.jmva.2006.11.010
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    T. Tony Cai
  • 通讯作者:
    T. Tony Cai

T. Tony Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('T. Tony Cai', 18)}}的其他基金

Collaborative Research: Transfer Learning for Large-Scale Inference: General Framework and Data-Driven Algorithms
协作研究:大规模推理的迁移学习:通用框架和数据驱动算法
  • 批准号:
    2015259
  • 财政年份:
    2020
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
Borrowing Strength: Theory Powering Applications
借用强度:理论驱动应用
  • 批准号:
    1841682
  • 财政年份:
    2018
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrative Large-Scale Data Analysis and Statistical Inference
协作研究:综合大规模数据分析和统计推断
  • 批准号:
    1712735
  • 财政年份:
    2017
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
Theory and Methods for Estimation of Nonsmooth Functionals and Detection of Simultaneous Signals
非光滑泛函估计和同时信号检测的理论和方法
  • 批准号:
    1403708
  • 财政年份:
    2014
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
Random Matrix Theory and High Dimensional Statistics
随机矩阵理论和高维统计
  • 批准号:
    1208982
  • 财政年份:
    2012
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
Borrowing Strength: Theory Powering Applications
借用强度:理论驱动应用
  • 批准号:
    0957049
  • 财政年份:
    2010
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
Theory And Methodology For Sparse Inference
稀疏推理的理论和方法
  • 批准号:
    0604954
  • 财政年份:
    2006
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
Block Thresholding Methods for Adaptive Wavelet Function Estimation: Theory and Applications
自适应小波函数估计的块阈值方法:理论与应用
  • 批准号:
    0296215
  • 财政年份:
    2001
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
Block Thresholding Methods for Adaptive Wavelet Function Estimation: Theory and Applications
自适应小波函数估计的块阈值方法:理论与应用
  • 批准号:
    0072578
  • 财政年份:
    2000
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 85.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了