FRG: Collaborative Research: Mathematical Modeling of Rechargeable Batteries

FRG:协作研究:可充电电池的数学建模

基本信息

  • 批准号:
    0855011
  • 负责人:
  • 金额:
    $ 72.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2009-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The project will develop a new framework for mathematical modeling of rechargeable batteries, taking into account statistical thermodynamics, concentrated-solution reaction rates, elasticity, crystal anisotropy, stochastic effects, and composite microstructures. Existing engineering models simply fit the open circuit voltage empirically and postulate dynamics by linear diffusion of intercalated lithium, but recent experiments contradict this picture for phase-separating materials. In contrast, the team will develop robust mathematical models to predict the voltage and current response over the full range of operating conditions. The basis for modeling at the single-crystal level will be Cahn-Hilliard partial differential equations with nonlinear boundary conditions, expressing chemical-potential dependent reaction reactions. The goal will be to provide the first mathematical description of emerging high-rate materials, where phase transformations occur via nonlinear intercalation waves, coupling anisotropic diffusion and electrochemical reactions. This effort will also raise basic mathematical questions in linear and nonlinear stability, degenerate wave solutions, and numerical methods.In spite of extensive engineering over the past few decades, the performance of rechargeable batteries has improved only incrementally. Power density (charge/discharge rate per unit mass) and cycle life must still improve drastically for applications such as electric vehicles and renewable energy storage, and this will require a better fundamental understanding of how ions are inserted and extracted from porous electrodes. To meet this need, the project creates a Focused Research Group from mathematics, chemical engineering, and materials science to develop a new theoretical paradigm for Li-ion batteries. The group will guide the engineering of new ultrafast Li-ion batteries, capable of charging and discharging in seconds rather than hours, while opening fruitful directions for applied mathematics. The group will train graduate and undergraduate students and postdocs, organize annual workshops, and develop a course on mathematical modeling of electrochemical energy systems.
该奖项由2009年美国复苏和再投资法案(公法111-5)资助。该项目将开发一个新的可充电电池数学建模框架,考虑统计热力学,浓溶液反应速率,弹性,晶体各向异性,随机效应和复合材料微观结构。现有的工程模型简单地拟合开路电压经验和假设动力学的线性扩散的嵌入锂,但最近的实验相分离材料的这一图片相矛盾。相比之下,该团队将开发强大的数学模型来预测整个工作条件范围内的电压和电流响应。在单晶水平上建模的基础将是具有非线性边界条件的Cahn-Hilliard偏微分方程,表示化学势相关的反应。我们的目标将是提供新兴的高速率材料的第一个数学描述,其中相变发生通过非线性嵌入波,耦合各向异性扩散和电化学反应。这一努力也将提出基本的数学问题,在线性和非线性稳定性,退化波的解决方案,和numerical methods.In尽管在过去的几十年中广泛的工程,可充电电池的性能只有逐步提高。对于电动汽车和可再生能源存储等应用,功率密度(每单位质量的充电/放电速率)和循环寿命仍必须大幅提高,这将需要更好地了解离子如何从多孔电极中插入和提取。为了满足这一需求,该项目创建了一个来自数学,化学工程和材料科学的重点研究小组,为锂离子电池开发新的理论范式。该小组将指导新型超快锂离子电池的工程设计,能够在几秒钟而不是几小时内充电和放电,同时为应用数学开辟富有成效的方向。该小组将培训研究生、本科生和博士后,组织年度研讨会,并开发一门关于电化学能源系统数学建模的课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Bazant其他文献

Martin Bazant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Bazant', 18)}}的其他基金

EAGER/Collaborative Research: New Concept of Sorption Hysteresis and Disjoining Pressure in Concrete and Other Adsorbent Microporous Solids
EAGER/合作研究:混凝土和其他吸附性微孔固体中吸附滞后和分离压力的新概念
  • 批准号:
    1153509
  • 财政年份:
    2011
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
Mathematical Modeling of Rechargeable Batteries
可充电电池的数学建模
  • 批准号:
    0930146
  • 财政年份:
    2009
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mathematical Modeling of Rechargeable Batteries
FRG:协作研究:可充电电池的数学建模
  • 批准号:
    0948071
  • 财政年份:
    2009
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
Mathematical Modeling of Rechargeable Batteries
可充电电池的数学建模
  • 批准号:
    0842504
  • 财政年份:
    2008
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
Mathematical Modeling of Induced-Charge Electrokinetics
感应电荷电动学的数学模型
  • 批准号:
    0707641
  • 财政年份:
    2007
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 72.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了