RUI: Collaborative Research: Elliptic Partial Differential Equations on Singular Manifolds and Applications in Complex Geometry
RUI:合作研究:奇异流形上的椭圆偏微分方程及其在复杂几何中的应用
基本信息
- 批准号:0901202
- 负责人:
- 金额:$ 14.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The principal investigators propose to undertake a systematic development of a theory for elliptic partial differential equations on a compact manifold with singularities of edge type. The core of the project is a precise description of boundary value problems at the singular locus and the investigation of well-posedness under suitable ellipticity conditions. As a direct application of the theory, the project will study natural elliptic complexes such as the Dolbeault complex of a compact analytic variety whose singular locus is smooth. The principal investigators expect that the techniques to be developed here will also increase our understanding of the Dolbeault complex in the case of more general singularities. The project will pave the way for a spectral analysis (resolvents, zeta functions, etc.) of elliptic operators associated with incomplete wedge geometries. In the context of complex analysis, the project has the potential to shed some light on the study of the cohomology in more general classes of compact analytic varieties. The theory to be developed will provide a theoretical underpinning for the analysis of applied problems in engineering, mathematical physics, and quantum chemistry. The project relies on and encourages a joint effort from researchers with different mathematical backgrounds, promoting a broader interaction in research and in issues pertaining to education. Some aspects of the work represent opportunities of research experiences for graduates and advanced undergraduate students.
该奖项是根据2009年《美国复苏和再投资法案》(公法111-5)提供资金的。主要研究人员建议对具有边型奇点的紧致流形上的椭圆型偏微分方程的理论进行系统的发展。该项目的核心是精确地描述奇异轨迹上的边值问题,并研究在适当的椭圆性条件下的适定性。作为理论的直接应用,该项目将研究自然椭圆复形,如奇点光滑的紧凑解析变种的Dolbeault复形。主要研究人员预计,在更一般奇点的情况下,这里将发展的技术也将增加我们对多尔博特复合体的理解。该项目将为光谱分析(解析器、Zeta函数等)铺平道路。与不完整的楔形几何相关联的椭圆运算符。在复杂分析的背景下,该项目有可能为更一般的紧凑分析品种的上同调研究提供一些启示。即将发展的理论将为工程、数学物理和量子化学中的应用问题的分析提供理论基础。该项目依赖并鼓励具有不同数学背景的研究人员共同努力,促进在研究和与教育有关的问题上进行更广泛的互动。这项工作的某些方面为毕业生和高级本科生提供了研究经验的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Krainer其他文献
Maximal L p –L q Regularity for Parabolic Partial Differential Equations on Manifolds with Cylindrical Ends
- DOI:
10.1007/s00020-009-1660-7 - 发表时间:
2009-02-12 - 期刊:
- 影响因子:0.900
- 作者:
Thomas Krainer - 通讯作者:
Thomas Krainer
On the expansion of the resolvent for elliptic boundary contact problems
- DOI:
10.1007/s10455-008-9138-4 - 发表时间:
2008-11-28 - 期刊:
- 影响因子:0.700
- 作者:
Thomas Krainer - 通讯作者:
Thomas Krainer
A Shubin Pseudodifferential Calculus on Asymptotically Conic Manifolds
- DOI:
10.1007/s00041-025-10178-3 - 发表时间:
2025-06-10 - 期刊:
- 影响因子:1.200
- 作者:
Thomas Krainer - 通讯作者:
Thomas Krainer
$${\mathcal{R}}$$ -boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators
- DOI:
10.1007/s00229-007-0131-1 - 发表时间:
2007-09-26 - 期刊:
- 影响因子:0.600
- 作者:
Robert Denk;Thomas Krainer - 通讯作者:
Thomas Krainer
Thomas Krainer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Krainer', 18)}}的其他基金
Special meeting: Penn State - Goettingen International Summer Schools in Mathematics
特别会议:宾夕法尼亚州立大学 - 哥廷根国际数学暑期学校
- 批准号:
0963728 - 财政年份:2010
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
- 批准号:
2426728 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
- 批准号:
2303409 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
RUI:合作研究:评估加州当前生态系统中火体入侵和持续存在的原因
- 批准号:
2329561 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
- 批准号:
2303408 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346566 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant