III: Medium: Collaborative Research: Optimization with Sparse Priors -- Algorithms, Indices, and Economic Incentives

III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励

基本信息

  • 批准号:
    0904325
  • 负责人:
  • 金额:
    $ 69.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This is a collaborative research project combining the expertise of Ashish Goel, Stanford University (IIS-0904325) and Sanjeev Khanna, University of Pennsylvania (IIS-0904314).Traditionally, content has been generated by a limited number of publishers (such as book houses, music companies, and newspapers), and its quality then evaluated by professional editors and reviewers. In recent years, however, individuals have become mass producers of content, generating images, blogs, opinions, and recommendations, in a decentralized manner. This content is then discovered and consumed by other users, and centralized review is rendered infeasible by the sheer magnitude of available content. Consequently, there is a need to utilize user feedback, both explicit and implicit, in order to provide optimum rankings and recommendations to Internet users. The same broad problem occurs in online advertising, automatic moderation of discussion boards, and automated deductions of user preference on social networks. In addition to being very large, user activity data on the Internet is also typically very sparse, since each user only performs a small share of possible actions (e.g., searches for a small fraction of keywords, reviews or purchases a small fraction of products).This project aims to design algorithms and optimization techniques to effectively utilize such data. The sparse data is treated as a "prior belief" on user preferences. The project also aims to design economic incentives to obtain useful and corrective data, robust to manipulation. The two parts of this research interact strongly with each other, since the algorithmic component can identify valuable pieces of additional information to acquire. Together, these two parts can help users derive optimum value from Internet data. Results of this project will improve search engine performance and facilitate web applications that employ user feedback. The project Web site (http://www.stanford.edu/~ashishg/sparse_opt.html) will be used to disseminate results.
这是一个结合了斯坦福大学Ashish Goel(IIS-0904325)和宾夕法尼亚大学Sanjeev卡纳(IIS-0904314)的专业知识的合作研究项目。传统上,内容由有限数量的出版商(如图书公司、音乐公司和报纸)生成,然后由专业编辑和评审员对其质量进行评估。然而,近年来,个人已经成为内容的大规模生产者,以分散的方式生成图像,博客,意见和推荐。 这些内容随后被其他用户发现和消费,并且由于可用内容的绝对数量而使得集中审查变得不可行。因此,有必要利用用户的反馈,无论是明确的和隐含的,以提供最佳的排名和建议,互联网用户。在线广告、讨论板的自动审核以及社交网络上用户偏好的自动扣除也存在同样的广泛问题。除了非常大之外,互联网上的用户活动数据通常也非常稀疏,因为每个用户仅执行可能动作的一小部分(例如,搜索一小部分关键字,评论或购买一小部分产品)。该项目旨在设计算法和优化技术,以有效地利用这些数据。稀疏数据被视为用户偏好的“先验信念”。该项目还旨在设计经济激励措施,以获得有用和正确的数据,防止操纵。这项研究的两个部分相互作用很强,因为算法部分可以识别有价值的额外信息。这两个部分一起可以帮助用户从互联网数据中获得最佳价值。该项目的成果将提高搜索引擎的性能,并促进采用用户反馈的网络应用程序。将利用该项目的网址(http://www.stanford.edu/tagashishg/sparse_opt.html)来传播成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashish Goel其他文献

Exact sampling of TCP window states
TCP 窗口状态的精确采样
Recognizing Mitochondrial Hepatopathy in Acute Fatty Liver of Pregnancy
认识妊娠期急性脂肪肝中的线粒体肝病
Towards protocol equilibrium with oblivious routers
与不经意的路由器实现协议平衡
  • DOI:
    10.1109/infcom.2004.1354610
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Debojyoti Dutta;Ashish Goel;J. Heidemann
  • 通讯作者:
    J. Heidemann
The “Hub and Spoke” model: a pathway for urgent plasma exchange to treat patients with rodenticide ingestion induced acute liver failure in Tamil Nadu, India
“中心辐射”模式:印度泰米尔纳德邦因摄入灭鼠剂引起的急性肝功能衰竭患者进行紧急血浆置换的途径
  • DOI:
    10.1016/j.lansea.2024.100405
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shilpa Prabhakar Satish;Krishnasamy Narayanasamy;M. T. Sambandam;Srinivasan Raghunanthan;Jeyalydia Johnson;Amirthalingam Mangaiyarkarasi;Chellian Paranthakan;Suresh Narayanan;Selvaraj Chandrasekar;Singaram Sureshkanna;U. Dhus;Jayanthi Venkatraman;Vijay Alexander;Santhosh E. Kumar;V. David;Santosh Varughese;Dolly Daniel;Ashish Goel;U. Zachariah;C. Eapen;Santhosh E. Kumar;G. Chellaiya;DeepthiR Veetil;Sunderraj Gnanadeepam;Sumathy Jayaraman;K. Abhilash;Debasis Das Adhikary;K. Pichamuthu;Ebor Jacob;Subramani Kandasami;Indira Agarwal;Santosh Varughese;C. Eapen
  • 通讯作者:
    C. Eapen
Improving Transplant-free Survival With Low-volume Plasma Exchange to Treat Children With Rodenticide Induced Hepatotoxicity.
通过低容量血浆置换来治疗灭鼠剂引起的肝毒性儿童,从而提高无移植存活率。
  • DOI:
    10.1016/j.jceh.2022.10.013
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    L. Thomas;Jolly Chandran;Ashish Goel;E. Jacob;B. Chacko;K. Subramani;I. Agarwal;S. Varughese;V. David;D. Daniel;J. Mammen;Vijayalekshmi Balakrishnan;K. Balasubramanian;A. Lionel;D. Adhikari;K. Abhilash;E. Elias;C. Eapen;U. Zachariah
  • 通讯作者:
    U. Zachariah

Ashish Goel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashish Goel', 18)}}的其他基金

AitF: Collaborative Research: Fair and Efficient Societal Decision Making via Collaborative Convex Optimization
AitF:协作研究:通过协作凸优化实现公平高效的社会决策
  • 批准号:
    1637418
  • 财政年份:
    2016
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Dealing Efficiently with Big Social Network Data
BIGDATA:F:DKA:协作研究:有效处理社交网络大数据
  • 批准号:
    1447697
  • 财政年份:
    2014
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant
EAGER: Algorithmic aspects of molecular circuits and molecular machines
EAGER:分子电路和分子机器的算法方面
  • 批准号:
    0947670
  • 财政年份:
    2009
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
DC: Small: The Use of Ternary Associative Memories in Data Intensive Computing
DC:小型:三元联想存储器在数据密集型计算中的使用
  • 批准号:
    0915040
  • 财政年份:
    2009
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
SGER: Algorithmic Issues at the Nano Scale
SGER:纳米尺度的算法问题
  • 批准号:
    0650058
  • 财政年份:
    2006
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
NANO: Collaborative Research: Algorithmic error-correction in biologically inspired self-assembly and computation
NANO:协作研究:受生物启发的自组装和计算中的算法纠错
  • 批准号:
    0524783
  • 财政年份:
    2005
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: DNA Self-Assembly -- Experimentation and Theoretical Foundations
合作研究:DNA 自组装——实验和理论基础
  • 批准号:
    0323766
  • 财政年份:
    2003
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
CAREER: Algorithms for Services - Oriented Communications Networks
职业:服务算法 - 面向通信网络
  • 批准号:
    0339262
  • 财政年份:
    2003
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant
CAREER: Algorithms for Services - Oriented Communications Networks
职业:服务算法 - 面向通信网络
  • 批准号:
    0133968
  • 财政年份:
    2002
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了