Collaborative Research: Spectral and Connectivity Analysis of Non-Stationary Spatio-Temporal Data
合作研究:非平稳时空数据的谱和连通性分析
基本信息
- 批准号:0904825
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this research is the development of new statistical methodologies for modeling connectivity in non-stationary spatio-temporal data. The investigators will develop four specific methods and models which will be applied to data provided by t he investigator's collaborators. First, motivated by the need for more sophisticated methods to investigate complex dependencies between two time series (e.g., brain regions), the investigators will build tools for exploring non-linear and time-evolving dependence between signals using dynamic mutual information in the spectral domain. Second, the notion of spatially-varying and temporally-evolving spectrum will be made precise via a stochastic representation of non-stationary spatio-temporal processes. An asymptotic framework for consistent estimation and inference will be developed. Third, a general spectral model for connectivity in a multi-subject experiment via a latent network model will be formulated. The empirically-driven model will incorporate items such as stimulus types, exogeneous time series, and subject-specific random effects. Finally, to complement this exploratory approach for modeling spectral data and connectivity, the investigators will build a scientifically-motivated semi-parametric state-space model of effective connectivity using multi-subject data.The overarching goal of this research is the development of new statistical methodologies for analyzing data that has both a time and space dimension. Spatio-temporal data are prevalent in many disciplines, including the environmental and soil sciences, meteorology and oceanography, neuroscience and the emerging fields of health and bioterrorism surveillance. The primary data source for the investigators is time-sequenced data of brain activity measured at many locations in the brain. These signals contain information on how the brain functions, how it responds to outside stimuli, and where synchronization of functionality occurs. The statistical models the investigators are developing help sift through this information, allowing for the detection of trends in brain functionality, and estimation of population- and individual-level differences in performance. The empirical nature of the models allows for data-driven confirmation and discovery of neuroscientific theory. The statistical models will also be predictive, aiding in the quest for personalized diagnosis and treatment of depression, anxiety, and other neurological conditions. While the statistical research is motivated by the investigators' ongoing collaboration with neuroscientists, there is a unified statistical theme applicable to many other areas of interest.
本研究的重点是开发新的统计方法,用于非平稳时空数据中的连通性建模。研究人员将开发四种具体方法和模型,并将其应用于研究人员合作者提供的数据。首先,由于需要更复杂的方法来研究两个时间序列之间的复杂依赖关系(例如,大脑区域),研究人员将使用谱域中的动态互信息构建工具来探索信号之间的非线性和时间演变依赖性。其次,空间变化和时间演变的频谱的概念将通过非平稳时空过程的随机表示精确。一个渐进的框架一致的估计和推理将开发。第三,一般的光谱模型的连接在一个多学科的实验,通过潜在的网络模型将制定。实验驱动的模型将包含刺激类型、外源时间序列和特定于受试者的随机效应等项目。最后,为了补充这种探索性的方法来建模光谱数据和连接,研究人员将建立一个科学的动机半参数状态空间模型的有效连接使用多学科data.The首要目标的研究是开发新的统计方法来分析数据,具有时间和空间维度。时空数据普遍存在于许多学科,包括环境和土壤科学、气象学和海洋学、神经科学以及卫生和生物恐怖主义监测等新兴领域。研究人员的主要数据来源是在大脑许多位置测量的大脑活动的时间序列数据。这些信号包含有关大脑如何运作的信息,它如何响应外部刺激,以及功能同步发生的位置。研究人员正在开发的统计模型有助于筛选这些信息,从而检测大脑功能的趋势,并估计群体和个人水平的表现差异。模型的经验性质允许数据驱动的确认和神经科学理论的发现。统计模型也将具有预测性,有助于寻求抑郁症,焦虑症和其他神经系统疾病的个性化诊断和治疗。虽然统计研究的动机是研究人员与神经科学家的持续合作,但有一个统一的统计主题适用于许多其他感兴趣的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wesley Thompson其他文献
Can mammalian pattern generators be understood?
哺乳动物的模式生成器可以被理解吗?
- DOI:
10.1017/s0140525x00006713 - 发表时间:
1980 - 期刊:
- 影响因子:29.3
- 作者:
James L. Larimer;Wesley Thompson - 通讯作者:
Wesley Thompson
Retention of word pairs as a function of level of processing, instruction to remember, and delay
单词对的保留与处理水平、记忆指令和延迟有关
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.3
- 作者:
J. G. Seiver;Michael Pires;Fatima Awan;Wesley Thompson - 通讯作者:
Wesley Thompson
Quantifying the Polygenic Architecture of the Human Cerebral Cortex
- DOI:
10.1016/j.biopsych.2020.02.353 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Dennis van der Meer;Oleksandr Frei;Tobias Kaufmann;Chi-Hua Chen;Wesley Thompson;Kevin O'Connell;Jennifer Monereo Sánchez;David Linden;Lars Westlye;Anders M. Dale;Ole Andreassen - 通讯作者:
Ole Andreassen
The role of CD4+ effector memory T-cells in cytomegalovirus-associated brain changes and depression: A dual-sample analysis
CD4+效应记忆T细胞在巨细胞病毒相关脑部改变和抑郁症中的作用:一项双样本分析
- DOI:
10.1016/j.bbi.2024.12.059 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:7.600
- 作者:
Haixia Zheng;Bart Ford;Ebrahim Haroon;Wesley Thompson;Chun Chieh Fan;T. Kent Teague;Martin Paulus;Jonathan Savitz;Steve Cole - 通讯作者:
Steve Cole
W163 - Parental Mental Health and Family Conflict on Behavioral Inhibition and Activation Among Youth in the ABCD Study®
W163 - ABCD 研究中父母心理健康和家庭冲突对青少年行为抑制与激活的影响
- DOI:
10.1016/j.drugalcdep.2024.112105 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Neo Gebru;Wesley Thompson;Micah Johnson;Alexandra Potter;Hugh Garavan - 通讯作者:
Hugh Garavan
Wesley Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wesley Thompson', 18)}}的其他基金
Collaborative Research: Spectral and Connectivity Analysis of Non-Stationary Spatio-Temporal Data
合作研究:非平稳时空数据的谱和连通性分析
- 批准号:
0804858 - 财政年份:2008
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Innervation of Fetal and Neonatal Muscle Fiber Types
胎儿和新生儿肌纤维类型的神经支配
- 批准号:
9009682 - 财政年份:1990
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229473 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313234 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313233 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
- 批准号:
2246547 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
- 批准号:
2246548 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229472 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant














{{item.name}}会员




