"G-SELC: A New Global Optimization Technique Using Genetic Algorithms, Tabu Search and Gaussian Processes"

“G-SELC:一种使用遗传算法、禁忌搜索和高斯过程的新全局优化技术”

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).In this work, the investigator develops a new global optimization technique, which is primarily motivated by applications in drug discovery. Although identification of useful compounds is critical to improving efficiency in drug discovery, pharmaceutical industries generally adopt ad hoc approaches to identify promising compounds. The proposed research aims to develop an efficient technique named G-SELC, which expedites this process. To this end, the investigator develops a global optimization procedure using local search techniques such as Genetic Algorithms and Tabu Search combined with statistical modeling involving Gaussian processes. This research is also extended to categorical variables in Gaussian process. In addition, the investigator develops efficient numerical techniques to reduce computational burden for this batch sequential optimization problem.Identifying promising compounds from a vast collection of feasible compounds is an important and yet challenging problem in pharmaceutical industry. The proposed research helps reduce the expenditure at the early stages of drug discovery, thus creating significant economic and social benefits. This optimization technique is also used to identify optimal solutions in many other scientific research problems such as computer experiments, functional magnetic resonance imaging and nanotechnology. The investigator shows that in some applications, categorical variables can be treated as continuous. This simplifies the computation in Gaussian process modeling significantly. It has far-reaching consequences not only in drug discovery, but also in complex computer modeling where Gaussian process modeling is used extensively which includes modeling air quality, calibration of computational models of cerebral blood flow, predicting climate and weather, statistical mechanics of granular flow, terrestrial models, dynamics of infectious diseases and so on.
该奖项由 2009 年美国复苏和再投资法案(公法 111-5)资助。在这项工作中,研究人员开发了一种新的全局优化技术,该技术主要受药物发现应用的推动。尽管鉴定有用的化合物对于提高药物发现的效率至关重要,但制药行业通常采用临时方法来鉴定有前途的化合物。拟议的研究旨在开发一种名为 G-SELC 的有效技术,以加快这一过程。为此,研究人员使用遗传算法和禁忌搜索等局部搜索技术,结合涉及高斯过程的统计建模,开发了全局优化程序。这项研究还扩展到高斯过程中的分类变量。此外,研究人员开发了有效的数值技术来减少该批量顺序优化问题的计算负担。从大量可行的化合物中识别有前途的化合物是制药行业中一个重要且具有挑战性的问题。拟议的研究有助于减少药物发现早期阶段的支出,从而创造显着的经济效益和社会效益。这种优化技术还用于确定许多其他科学研究问题的最佳解决方案,例如计算机实验、功能磁共振成像和纳米技术。研究人员表明,在某些应用中,分类变量可以被视为连续变量。这显着简化了高斯过程建模中的计算。它不仅在药物发现方面具有深远的影响,而且在广泛使用高斯过程模型的复杂计算机建模中,包括空气质量建模、脑血流计算模型校准、气候和天气预测、颗粒流统计力学、陆地模型、传染病动力学等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhyuday Mandal其他文献

Approximations of the information matrix for a panel mixed logit model
A-ComVar: A Flexible Extension of Common Variance Designs
  • DOI:
    10.1007/s42519-019-0079-y
  • 发表时间:
    2020-01-16
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Shrabanti Chowdhury;Joshua Lukemire;Abhyuday Mandal
  • 通讯作者:
    Abhyuday Mandal

Abhyuday Mandal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23H03600
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research for infection immunity against global viral infections with a new bioinformatic approach
利用新的生物信息学方法研究针对全球病毒感染的感染免疫
  • 批准号:
    23KK0176
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
OX Global Limited - Enabling new energy infrastructure in underserved regions of Rwanda through the integration of zero-emission vehicle groundwork
OX Global Limited - 通过整合零排放汽车基础设施,在卢旺达服务欠缺地区启用新能源基础设施
  • 批准号:
    10047733
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300400
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
New biostimulant for global commodity crops
全球商品作物的新型生物刺激素
  • 批准号:
    10054243
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Investment Accelerator
Mantle dynamics beneath the North Atlantic region from integrated seismic imaging using new regional seafloor data and global datasets
使用新的区域海底数据和全球数据集通过综合地震成像研究北大西洋地区下方的地幔动力学
  • 批准号:
    NE/X000060/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Fostering a research collaboration on new global trends in violence against health workers
促进针对卫生工作者暴力行为的全球新趋势的研究合作
  • 批准号:
    480935
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Miscellaneous Programs
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300399
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300401
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了