Geometry and Mathematical Physics of D-Branes
D-膜的几何和数学物理
基本信息
- 批准号:0905923
- 负责人:
- 金额:$ 34.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The derived category of coherent sheaves has become a powerful tool in recent years in algebraic geometry. Remarkably this category also appears naturally in the mathematical physics of superstring theory where objects are D-branes, i.e., boundary conditions on open strings, and morphisms are Hilbert spaces associated to open string states. The proposer will investigate several aspects of this connection. The mathematics of tilting collections, quiver representations and matrix factorizations will be applied to notions such as monodromy, stability and moduli spaces to further understand string theory. It is expected that this research will lead to insight into the mathematics of the derived category of Calabi-Yau threefolds which play a central role in this proposal.String theory aims at providing an understanding of the fundamental physics of our universe, particularly the geometry of spacetime at short distances. The mathematics of string theory requires the use of sophisticated techniques from modern geometry. Indeed, ideas from string theory have inspired many recent important developements in the pure mathematics of geometry. This proposal will explore the connection between D-branes, which in a sense are subspaces of spacetime, and algebraic geometry, in which geometry is expressed purely in terms of algebraic equations. It is expected that new results both in pure mathematics and mathematical physics will be obtained.
近年来,凝聚层的导出范畴已成为代数几何中的一个有力工具。值得注意的是,这一范畴也自然地出现在超弦理论的数学物理中,其中的对象是D膜,即,开弦上的边界条件,态射是与开弦状态相关的希尔伯特空间。提议者将调查这种联系的几个方面。倾斜集合,矩阵表示和矩阵分解的数学将应用于单值,稳定性和模空间等概念,以进一步理解弦理论。预计这项研究将导致深入了解卡-丘三重范畴的数学,这在这一提议中起着核心作用。弦理论旨在提供对我们宇宙基本物理的理解,特别是短距离时空的几何。弦理论的数学需要使用现代几何学中的复杂技术。事实上,弦理论的思想激发了几何纯数学的许多重要发展。这个提议将探索D-膜(在某种意义上是时空的子空间)和代数几何(其中几何纯粹用代数方程表示)之间的联系。期望在纯数学和数学物理方面都能得到新的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Aspinwall其他文献
Paul Aspinwall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Aspinwall', 18)}}的其他基金
Algebraic Geometry and Quantum Field Theory of D-Branes
D-膜的代数几何和量子场论
- 批准号:
0606578 - 财政年份:2006
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
相似海外基金
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Conference on Algebraic Geometry, Mathematical Physics, and Solitons
代数几何、数学物理和孤子会议
- 批准号:
2231173 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
- 批准号:
RGPIN-2018-04349 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Geometry and Mathematical Physics group, algebraic geometry
几何与数学物理组,代数几何
- 批准号:
2885389 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Studentship
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Workshops in Geometry and Mathematical Physics and in Probability and Statistics
几何和数学物理以及概率和统计研讨会
- 批准号:
2201218 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Differential geometry methods in mathematical physics
数学物理中的微分几何方法
- 批准号:
RGPIN-2016-04133 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
- 批准号:
RGPIN-2018-04349 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Differential Geometry and Mathematical Physics
微分几何与数学物理
- 批准号:
2438494 - 财政年份:2020
- 资助金额:
$ 34.76万 - 项目类别:
Studentship