General Semiparametric Inference via Bootstrap Sampling
通过 Bootstrap 采样进行一般半参数推理
基本信息
- 批准号:0906497
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The research objectives of this project are first to prove the theoretical validity of the bootstrap method as a general inferential tool for the semiparametric models, and then invent a computationally attractive bootstrap inference procedure, called k-step bootstrap. Semiparametric modelling has provided an excellent framework for the modern complex data due to its flexibility to model some features of the data parametrically but without assuming anything for the other features. The bootstrap is the most popular data-resampling method used in statistical analysis, and has recently been applied to the semiparametric models arising from a wide variety of contexts. Therefore, the systematic theoretical studies on the bootstrap inferences for the semiparametric models are fundamentally important. In practice, the computational cost of the bootstrap inference procedure is particularly high for the semiparametric models. Thus, the investigator proposes an approximate bootstrap method, i.e. k-step bootstrap, and will show that this novel approach results in huge computational savings but without sacrificing any degree of inference accuracy. In addition, the investigator will develop a set of asymptotic results to elucidate the asymptotic structure of the semiparametric M-estimation, which is crucial for the future theoretical research. M-estimation refers to a general method of estimation including the maximum likelihood estimation as a special case.The primary impact of the proposed work is to lay solid theoretical foundation for the general semiparametric inferences via bootstrap sampling. In addition, the proposed k-step bootstrap approach is practically beneficial in several regards. For instance, the scientists who bootstrap a large data set will benefit, as the minimal computational cost needed in the k-step bootstrap to achieve the satisfactory inference accuracy will be precisely analyzed. However, the broader impacts of the proposed activities are multiple. For instance, a key aspect of this project is the integration of research and teaching, which will be achieved by proposing specific projects for students during the teaching of classes on semiparametric inferences and bootstrap computation. This pedagogical method also facilitates the participation of underrepresented groups of students.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。本项目的研究目标是首先证明Bootstrap方法作为半参数模型的一般推理工具的理论有效性,然后发明一种计算上有吸引力的Bootstrap推理过程,称为k-step Bootstrap。 半参数建模为现代复杂数据提供了一个很好的框架,因为它可以灵活地对数据的某些特征进行参数化建模,而无需对其他特征进行任何假设。自举法是统计分析中最常用的数据恢复方法,近年来已被广泛应用于半参数模型。因此,对半参数模型的自助推断进行系统的理论研究是十分重要的。在实践中,自举推理过程的计算成本是特别高的半参数模型。因此,研究者提出了一种近似的自举方法,即k步自举,并将表明这种新的方法可以节省大量的计算量,但不会牺牲任何程度的推理精度。此外,研究者还将得到一组渐近结果,以阐明半参数M-估计的渐近结构,这对未来的理论研究至关重要。M-估计是一种一般的估计方法,包括最大似然估计的特殊情况,本文的主要工作是为Bootstrap抽样的一般半参数推断奠定了理论基础。此外,所提出的k步自举方法在几个方面实际上是有益的。例如,引导一个大数据集的科学家将受益,因为在k步引导中实现令人满意的推理精度所需的最小计算成本将被精确分析。然而,拟议活动的广泛影响是多方面的。例如,该项目的一个关键方面是研究和教学的整合,这将通过在半参数推理和自助计算的课程教学中为学生提出具体项目来实现。这一教学方法也有利于代表性不足的学生群体的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guang Cheng其他文献
PDA-cross-linked beta-cyclodextrin: a novel adsorbent for the removal of BPA and cationic dyes.
PDA 交联 β-环糊精:一种用于去除 BPA 和阳离子染料的新型吸附剂。
- DOI:
10.2166/wst.2020.286 - 发表时间:
2020-06 - 期刊:
- 影响因子:2.7
- 作者:
Jianyu Wang;Guang Cheng;Jian Lu;Huafeng Chen;Yanbo Zhou - 通讯作者:
Yanbo Zhou
RBAS: A Real-Time User Behavior Analysis System for Internet TV in Cloud Computing
RBAS:云计算下的互联网电视实时用户行为分析系统
- DOI:
10.1145/2935663.2935664 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
C. Zhu;Guang Cheng;Xiaojun Guo;Yuxiang Wang - 通讯作者:
Yuxiang Wang
BadGD: A unified data-centric framework to identify gradient descent vulnerabilities
BadGD:一个以数据为中心的统一框架,用于识别梯度下降漏洞
- DOI:
10.48550/arxiv.2405.15979 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
ChiHua Wang;Guang Cheng - 通讯作者:
Guang Cheng
TimeAutoDiff: Combining Autoencoder and Diffusion model for time series tabular data synthesizing
TimeAutoDiff:结合自动编码器和扩散模型进行时间序列表格数据合成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Namjoon Suh;Yuning Yang;Din;Qitong Luan;Shirong Xu;Shixiang Zhu;Guang Cheng - 通讯作者:
Guang Cheng
HIGHER ORDER SEMIPARAMETRIC FREQUENTIST INFERENCE WITH THE PROFILE SAMPLER
使用配置文件采样器进行高阶半参数频率推理
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Guang Cheng;M. Kosorok - 通讯作者:
M. Kosorok
Guang Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guang Cheng', 18)}}的其他基金
Conference: UCLA Synthetic Data Workshop
会议:加州大学洛杉矶分校综合数据研讨会
- 批准号:
2309349 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
I-Corps: Trustworthy Synthetic Data Generation
I-Corps:值得信赖的综合数据生成
- 批准号:
2317549 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
- 批准号:
1712907 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
- 批准号:
1418202 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Bootstrap M-estimation in Semi-Nonparametric Models
职业:半非参数模型中的 Bootstrap M 估计
- 批准号:
1151692 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似海外基金
Semiparametric Efficient and Robust Inference on High-Dimensional Data
高维数据的半参数高效鲁棒推理
- 批准号:
2310578 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
- 批准号:
RGPIN-2015-03889 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric Inference for Integer-Valued Time Series
整数值时间序列的半参数推理
- 批准号:
RGPIN-2015-03889 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric Adaptive Designs and Statistical Inference for Both the Mean and the Quantiles
均值和分位数的半参数自适应设计和统计推断
- 批准号:
2014951 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Semiparametric Inference for Psychiatric Neuroimaging
精神病学神经影像的半参数推理
- 批准号:
10652980 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Semiparametric Inference for Psychiatric Neuroimaging
精神病学神经影像的半参数推理
- 批准号:
10225586 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Semiparametric Inference for Psychiatric Neuroimaging
精神病学神经影像的半参数推理
- 批准号:
10434748 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Studies on statistical inference for ultra-high dimensional semiparametric models
超高维半参数模型统计推断研究
- 批准号:
20K11705 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Robust Bayesian Semiparametric Inference of Heterogeneous Causal Effects in Observational Studies
观察研究中异质因果效应的鲁棒贝叶斯半参数推理
- 批准号:
2015552 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Semiparametric Inference for Psychiatric Neuroimaging
精神病学神经影像的半参数推理
- 批准号:
10031157 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:














{{item.name}}会员




