AMC-SS: Mathematical foundations of responsible risk management in credit markets

AMC-SS:信贷市场负责任风险管理的数学基础

基本信息

  • 批准号:
    0908099
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The aim of the research to be done is to develop new mathematical methodologies and models in the areas of stochastic analysis and financial engineering, for the propose of solving complex and important problems related to financial risk management and to financial decision making. Due to the current world-wide market turbulence, and taking into account the known causes that triggered the credit crunch, particular emphasis will be put on dynamic valuation and hedging of credit derivatives, with focus on credit default swaps and basket credit derivatives, as well as other complex financial instruments such as inflation-indexed swaps. This research will frame the following two main research areas: mathematical modeling for the purpose of financial risk management, with applications, among others, to hedging, valuation, and management of portfolio credit risk, and applications of stochastic analysis to studying of dependence between stochastic processes. Although the forthcoming research will yield fundamental advances within the areas of stochastic analysis and financial mathematics, it is anticipated that it will lead to new and practical tools that eventually become widely used in the financial industry and other applied disciplines, so to mitigate and to appropriately control the involved risks.This research will be of fundamental importance for several reasons. First, the troubled credit derivative industry will benefit directly from it, as new methods and techniques based on solid mathematical and financial advances will be developed for the purpose of valuing and managing basket credit derivatives, such as basket swaps, cash collateral debt obligations, asset backed securities, etc. This industry suffered great losses since the spring of 2007 mainly because the nature of such complex hybrid derivatives as structured credit derivatives was not really well understood, especially on the level of risk management (hedging of risk exposure). The research to be done will result in developing new robust dynamic models for these securities and provide reliable dynamic hedging strategies associated to these models, which consequently will give a better and broader understanding of an important part of the modern financial markets. Second, new applications of stochastic analysis will be developed, in particular with regard to dynamic acceptability indices. Dynamic acceptability indices are unitless measures of performances of a given cashflow, which will be studied from abstract probability point of view. The obtained results will be beneficiary for all market participants including regulators and government agencies, and will lead to a better understanding of market efficiency. Third, valuation and hedging of credit default swaps (CDS) as well as valuation and hedging of credit default swaptions, which are essential for the financial industry, will be specifically emphasized and new analytical tools will be developed for this purpose. Fourth, if true, then an analog of Sklar's theorem for probability measures on canonical spaces of stochastic processes will be an important extension of the classical Sklar's theorem. Perhaps, an analog of Sklar's theorem for probability measures on some general vector spaces (such as Polish spaces) will be derived in the process. Fifth, the researchers will study the dynamic "copula" problem with regard to Markov processes: for a given multidimensional Markov process, with each coordinate being also Markovian, what conditions need to be satisfied by the pseudo-differential operator corresponding to the (extended) infinitesimal generator of the multidimensional process, given that the pseudo-differential operator corresponding to the (extended) infinitesimal generator of each coordinate are known. Sixth, there will be a practical importance of studying of the above problems in view of potential applications, such as valuation and hedging of basket derivatives (basket equity options, basket credit derivatives, etc.).
研究的目的是在随机分析和金融工程领域开发新的数学方法和模型,以解决与金融风险管理和金融决策相关的复杂而重要的问题。 由于目前全球市场动荡,并考虑到引发信贷紧缩的已知原因,将特别强调信贷衍生工具的动态估值和对冲,重点是信贷违约掉期和一揽子信贷衍生工具,以及其他复杂的金融工具,如通货膨胀指数掉期。本研究将架构以下两个主要的研究领域:金融风险管理的数学建模,应用,除其他外,对冲,估值和管理的投资组合信用风险,和随机分析的应用,研究随机过程之间的依赖关系。虽然即将进行的研究将在随机分析和金融数学领域产生根本性的进展,预计它将导致新的和实用的工具,最终成为广泛使用的金融行业和其他应用学科,以减轻和适当地控制所涉及的风险。这项研究将具有根本性的重要性有几个原因。首先,陷入困境的信用衍生品行业将直接从中受益,因为基于坚实的数学和金融进步的新方法和技术将被开发出来,用于评估和管理篮子信用衍生品,如篮子互换,现金抵押债务,资产支持证券,自2007年春季以来,该行业遭受了巨大损失,主要是因为人们对结构性信用衍生品等复杂混合衍生品的性质并没有真正了解,特别是在风险管理层面(对冲风险敞口)。要做的研究将导致开发新的强大的动态模型,这些证券,并提供可靠的动态对冲策略与这些模型,从而将提供一个更好的和更广泛的理解现代金融市场的一个重要组成部分。其次,将开发随机分析的新应用,特别是在动态可接受性指标方面。 动态可接受性指标是一个给定的现金流的性能,这将从抽象的概率的角度来研究的无单位的措施。所获得的结果将有利于所有市场参与者,包括监管机构和政府机构,并将导致更好地理解市场效率。第三,特别强调金融业中必不可少的信用违约互换(CDS)的估价和对冲,以及信用违约互换的估价和对冲,并开发新的分析工具。第四,如果是真的,那么一个类似于斯克拉尔定理的概率测度的随机过程的典范空间将是一个重要的扩展经典斯克拉尔定理。也许,在这个过程中会推导出一个类似于Sklar定理的关于某些一般向量空间(如波兰空间)上概率测度的定理。第五,研究人员将研究关于马尔可夫过程的动态“copula”问题:对于一个给定的多维马尔可夫过程,每个坐标也是马尔可夫的,什么条件需要满足的伪微分算子对应的多维过程的(扩展的)无穷小生成元,假定对应于每个坐标的(扩展的)无穷小生成元的伪微分算子是已知的。第六,从篮子衍生产品(一篮子股票期权、一篮子信用衍生产品等)的估价和套期保值等应用的角度来看,研究上述问题具有重要的现实意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomasz Bielecki其他文献

Default Correlation, Cluster Dynamics and Single Names: the Gpcl Dynamical Loss Model * (updated Version in the International Journal of Theoretical and Applied Finance)
默认相关性、聚类动力学和单一名称:Gpcl 动态损失模型 *(国际理论与应用金融杂志的更新版本)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Brigo;A. Pallavicini;Roberto Torresetti;A. Alfonsi;Marco Avellaneda;Norddine Bennani;Tomasz Bielecki;Giuseppe Castellacci;Dariusz Gatarek;Diego Di Grado;Youssef Elouerkhaoui;Kay Giesecke;M. Morini;Chris Rogers;Lutz Schlögl
  • 通讯作者:
    Lutz Schlögl

Tomasz Bielecki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomasz Bielecki', 18)}}的其他基金

Collaborative Research: Risk-Averse Control of Markov Systems with Model Uncertainty
协作研究:具有模型不确定性的马尔可夫系统的风险规避控制
  • 批准号:
    1907568
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Topics in stochastic processes and mathematical finance: counterparty risk valuation and hedging, Markov consistency and Markov copulae, and dynamic performance assessment indices
随机过程和数学金融主题:交易对手风险评估和对冲、马尔可夫一致性和马尔可夫联结函数以及动态绩效评估指数
  • 批准号:
    1211256
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AMC-SS: Research on Dependence of Stochastic Processes and on Mathematical Aspects of Credit Derivatives and Convertible Bonds
AMC-SS:随机过程依赖性以及信用衍生品和可转换债券的数学方面的研究
  • 批准号:
    0604789
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Topics in Risk Sensitive Control and Financial Mathematics
风险敏感控制和金融数学专题
  • 批准号:
    9971307
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

SS31肽通过AMPK/SIRT3通路调控氧化磷酸化在脓毒症心肌病中的作用及机制研究
  • 批准号:
    JCZRLH202501261
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
沙眼衣原体II型分泌系统(T2SS)次要假菌毛的鉴定及其分子组装机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
NrtR通过调控T6SS参与溶藻弧菌竞争定 植的分子机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
SMARCB1乙酰化修饰调控驱动基因SS18- SSX1增强子活性影响滑膜肉瘤侵袭转移 的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
铜绿假单胞菌T6SS调控因子TsrF作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
电针通过 Nrxn3SS4+/Cbln2/GluD1 信号介导的 AMPAR 失活在脊髓损伤修复中的机制研究
  • 批准号:
    Q24H270038
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
鰤鱼诺卡氏菌 VII 型分泌系统(T7SS)在致病 过程中的作用及机制初探
  • 批准号:
    TGN24C190012
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于ICCP-SS双重干预系统的海水海砂型钢混凝土梁柱节点抗震性能与设计
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
不锈钢SS310在布雷顿循环中的环境断裂敏感性和机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
  • 批准号:
    32300597
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
  • 批准号:
    MR/Z503873/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Significance of anti-SS-A antibody in Stevens-Johnson syndrome and toxic epidermal necrolysis
抗SS-A抗体在Stevens-Johnson综合征和中毒性表皮坏死松解症中的意义
  • 批准号:
    23K15289
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Experimental Combustion: Past, Present, and Future -- International Combustion Institute Summer School (CI-SS) 2023
会议:实验燃烧:过去、现在和未来——国际燃烧学院暑期学校(CI-SS)2023
  • 批准号:
    2312846
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SS-DSC: Stainless steel-concrete composite beams with stainless-steel demountable shear connectors for sustainable infrastructure
SS-DSC:带有不锈钢可拆卸剪力连接件的不锈钢混凝土组合梁,适用于可持续基础设施
  • 批准号:
    EP/Y020278/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
NOIR-SSを用いた淡明細胞型腎癌におけるctDNAの定量と背景因子の解明
使用 NOIR-SS 对透明细胞肾癌的 ctDNA 进行定量并阐明背景因素
  • 批准号:
    23K08731
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solid-State Battery Interface Design (SS-BID)
固态电池接口设计(SS-BID)
  • 批准号:
    DP230100429
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Development of reflection-mode computed tomography using THz-SS-OCT
使用 THz-SS-OCT 开发反射模式计算机断层扫描
  • 批准号:
    22K04133
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
  • 批准号:
    10700092
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
  • 批准号:
    10541742
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Development of simultaneous N and SS removal system using DHS-USB and BFT
使用 DHS-USB 和 BFT 开发同时 N 和 SS 去除系统
  • 批准号:
    22K14936
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了