Wave propagation in linear and nonlinear optical parity-time (PT) periodic media

线性和非线性光学奇偶时间 (PT) 周期介质中的波传播

基本信息

  • 批准号:
    0908599
  • 负责人:
  • 金额:
    $ 19.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to study the nonlinear dynamical behavior of light propagating in multi-dimensional complex parity-time (PT) photonic structures and disordered lattices. The mathematical strategy in this research is to use asymptotic and perturbation methods to develop reduced models. Using novel computational approaches these models will be examined numerically for the existence of localized solutions and their stability properties (where possible an analytic approach will also be undertaken). The results will be directly compared with experimental data, thus providing viable information on the accuracy of the model and quantitative insight to observations. The asymptotic validity of the model and various perturbative regimes will be examined in order to achieve a comprehensive mathematical understanding. Specifically, we will study localization properties and stability analysis of optical waves propagating in nonlinear multi-dimensional complex PT periodic structures that is modeled by the PT nonlinear Schroedinger equation. Moreover, we will investigate wave localization and dynamic stability in nonlinear three-dimensional random photonic lattices and study the phenomenon known as nonlinear Anderson localization. The field of optical wave propagation in nonlinear and random photonic structures has the potential for technological applications such as all-optical signal processing, navigation and switching. Photonics hold great promise for building high-speed, nanoscale switches and gates. Control of spatially or temporally localized structures within optical media is a critical issue in fabricating all optical devices. As such many resources have been put into building innovative experiments utilizing new optical materials that explore the dynamics and control the effects of nonlinearity and randomness in optical materials. To date, much of the research has been in the linear regime. Recent experimental discoveries such as the optical induction technique to create photonic lattices, have begun to allow researchers addressing many important issues related to wave propagation in periodic media such as optical waveguide arrays which until recently were thought to be impossible. However, even with the current detailed experimentation, probing optical phenomena at a sufficiently high spatial and temporal resolution to gain an improved theoretical understanding remains a challenge. There is thus great demand for companion theoretical investigations capable of accurately describing experiments. Due to the disparate range of scales involved, the primitive equations for investigating optical phenomena, Maxwell's equations are computationally prohibitive to solve. Thus there is a need for computationally efficient reduced models that quantitatively capture the essential phenomena, providing clear physical and theoretical insight. The purpose of this project is to address these issues for optical photonic systems by exploring, investigating, and simulating reductions of Maxwell's equations. The emphasis is on the modeling and computational aspects of wave propagation in photonic lattices and waveguide arrays.
本课题的目的是研究光在多维复宇称时间(PT)光子结构和无序晶格中传播的非线性动力学行为。本研究的数学策略是使用渐近和摄动方法来建立简化模型。使用新颖的计算方法,这些模型将在数值上检查局部解的存在及其稳定性(在可能的情况下也将采用分析方法)。结果将直接与实验数据进行比较,从而为模型的准确性和对观测结果的定量洞察提供可行的信息。模型的渐近有效性和各种微扰状态将被检查,以实现一个全面的数学理解。具体而言,我们将研究光波在非线性多维复杂PT周期结构中传播的局域性和稳定性分析,该结构由PT非线性薛定谔方程建模。此外,我们将研究非线性三维随机光子晶格中的波局域化和动态稳定性,并研究非线性安德森局域化现象。光波在非线性和随机光子结构中的传播在全光信号处理、导航和开关等技术领域具有潜在的应用前景。光子学在制造高速、纳米级的开关和门方面前景广阔。光介质中空间或时间局部结构的控制是制造所有光学器件的关键问题。因此,许多资源已经投入到利用新型光学材料建立创新实验,探索光学材料的动力学和控制非线性和随机性的影响。到目前为止,大部分的研究都是线性的。最近的实验发现,如创建光子晶格的光感应技术,已经开始允许研究人员解决与周期性介质中波传播相关的许多重要问题,例如光波导阵列,直到最近才被认为是不可能的。然而,即使有了目前详细的实验,在足够高的空间和时间分辨率下探测光学现象以获得改进的理论理解仍然是一个挑战。因此,对能够准确描述实验的配套理论研究的需求很大。由于涉及的尺度范围不同,用于研究光学现象的原始方程,麦克斯韦方程在计算上是难以解决的。因此,需要计算效率高的简化模型,定量地捕捉基本现象,提供清晰的物理和理论见解。本项目的目的是通过探索、研究和模拟麦克斯韦方程组的简化来解决光学光子系统中的这些问题。重点是在模拟和计算方面的波传播在光子晶格和波导阵列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ziad Musslimani其他文献

Ziad Musslimani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ziad Musslimani', 18)}}的其他基金

Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant

相似国自然基金

页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
  • 批准号:
    40872203
  • 批准年份:
    2008
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Simulations of non-linear elastic wave propagation in cracked media
裂纹介质中非线性弹性波传播的模拟
  • 批准号:
    561820-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.53万
  • 项目类别:
    University Undergraduate Student Research Awards
Modelling the growth and propagation of Tsunami waves with non-linear shallow water wave equations
用非线性浅水波浪方程模拟海啸波的增长和传播
  • 批准号:
    515672-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Research on the disappearance phenomenon of forming shock wave in the non-linear propagation of compression wave in the long tube
压缩波在长管内非线性传播中形成激波消失现象的研究
  • 批准号:
    24560199
  • 财政年份:
    2012
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CISM-Kurs "Wave propagation in linear and nonlinear periodic media: Analysis and applications" (21.-25.06.2010 in Udine/Italien)
CISM 课程“线性和非线性周期介质中的波传播:分析和应用”(2010 年 6 月 21 日至 25 日,意大利乌迪内)
  • 批准号:
    184484761
  • 财政年份:
    2010
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Research Grants
COCHLEAR MECHANICS, WAVE PROPAGATION, AND COMPRESSION
耳蜗力学、波传播和压缩
  • 批准号:
    10319973
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
COCHLEAR MECHANICS, WAVE PROPAGATION, AND COMPRESSION
耳蜗力学、波传播和压缩
  • 批准号:
    7386681
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
COCHLEAR MECHANICS, WAVE PROPAGATION, AND COMPRESSION
耳蜗力学、波传播和压缩
  • 批准号:
    7788177
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
COCHLEAR MECHANICS, WAVE PROPAGATION, AND COMPRESSION
耳蜗力学、波传播和压缩
  • 批准号:
    8047962
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
COCHLEAR MECHANICS, WAVE PROPAGATION, AND COMPRESSION
耳蜗力学、波传播和压缩
  • 批准号:
    7584110
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
COCHLEAR MECHANICS, WAVE PROPAGATION, AND COMPRESSION
耳蜗力学、波传播和压缩
  • 批准号:
    10063983
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了