Numerical Methods for Inverse Problems of the Linear Boltzmann Transport Equation

线性玻尔兹曼传输方程反问题的数值方法

基本信息

  • 批准号:
    0914825
  • 负责人:
  • 金额:
    $ 18.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The objective of this project is to develop fast and robust numerical reconstruction methods for linear and nonlinear inverse transport problems appeared in many application areas. The main approach proposed is to incorporate a priori information into optimization-based algorithms that have been developed in the past. The a priori information includes both knowledge on the unknowns to be reconstructed and knowledge on numerical methods for forward transport problems. More precisely, the proposed research include: (1) to develop methods that utilize a priori information to reduce the number of unknowns in the reconstruction, and to reconstruct features in the object of interests; (2) to accelerate the reconstruction process by analyzing the structure of the forward transport problem so that larger set of data can be used in the reconstruction process; and (3) to develop efficient Bayesian computational methods for uncertainty quantification in transport-based imaging problems. The proposed research lies between numerical mathematics and applications. From computational point of view, developing fast, robust and accurate reconstruction algorithms for ill-posed transport-based inverse problems is very challenging, not only because of the advanced numerical optimization, numerical partial differential equations techniques it involves, but also because of the fact that a deep understanding of the theory of ill-posed inverse problems is required. Many ideas developed in this proposal should have straightforward applications in numerical solutions of other model-based inverse problems. From application point of view, inverse transport problems find applications in various areas such as medical imaging (mainly optical tomography and optical molecular imaging), detection and imaging in random media, and atmospheric optics. The proposed research can potentially has long-term impacts in those application areas, improving both the stability and the accuracy of those imaging methods. Some of the ideas and techniques developed in this project will be incorporated into a graduate level class on numerical methods for inverse problems which presumably will benefit graduates who are interested in applying mathematical and computational techniques to solve real world problems.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目的目标是为许多应用领域中出现的线性和非线性逆输运问题开发快速和鲁棒的数值重建方法。提出的主要方法是将先验信息纳入到基于优化的算法,在过去已经开发。先验信息包括关于待重建的未知量的知识和关于前向输运问题的数值方法的知识。更准确地说,所提出的研究包括:(1)开发利用先验信息减少重建中未知数的方法,并重建感兴趣对象中的特征:(2)通过分析前向传输问题的结构来加速重建过程,以便在重建过程中可以使用更大的数据集;以及(3)发展有效的贝叶斯计算方法,用于基于运输的成像问题中的不确定性量化。所提出的研究介于数值数学和应用之间。从计算的角度来看,开发快速,鲁棒和准确的重建算法的不适定输运反问题是非常具有挑战性的,不仅因为它涉及到先进的数值优化,数值偏微分方程技术,而且因为一个事实,即需要深入了解不适定反问题的理论。在这个建议中开发的许多想法应该有直接的应用程序在其他基于模型的反问题的数值解。从应用的角度来看,逆输运问题在医学成像(主要是光学层析成像和光学分子成像),随机介质中的检测和成像,以及大气光学等领域有着广泛的应用。拟议的研究可能会对这些应用领域产生长期影响,提高这些成像方法的稳定性和准确性。 在这个项目中开发的一些想法和技术将被纳入一个研究生水平的类反问题的数值方法,这大概将有利于毕业生谁有兴趣应用数学和计算技术来解决真实的世界问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kui Ren其他文献

Comparison of Frequency-Domain Transport- and Diffusion-Based Reconstructions of Small Tissue Volumes
基于频域传输和扩散的小组织体积重建的比较
  • DOI:
    10.1364/bio.2006.sh31
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kui Ren;G. Bal;A. Hielscher
  • 通讯作者:
    A. Hielscher
Design and Evaluation of Fluctuating Power Logic to Mitigate Power Analysis at the Cell Level
波动功率逻辑的设计和评估,以减轻单元级的功率分析
Push the Limit of Adversarial Example Attack on Speaker Recognition in Physical Domain
突破物理领域说话人识别的对抗性示例攻击的极限
BypTalker: An Adaptive Adversarial Example Attack to Bypass Prefilter-enabled Speaker Recognition
BypTalker:绕过启用预过滤器的说话人识别的自适应对抗示例攻击
Jamming-Resistant Multiradio Multichannel Opportunistic Spectrum Access in Cognitive Radio Networks
认知无线电网络中的抗干扰多无线电多通道机会频谱接入

Kui Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kui Ren', 18)}}的其他基金

Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
  • 批准号:
    2309802
  • 财政年份:
    2023
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
RTG: Research Training in Applied Mathematics at Columbia University
RTG:哥伦比亚大学应用数学研究培训
  • 批准号:
    1937254
  • 财政年份:
    2020
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Continuing Grant
Inverse Problems and Imaging with Nonlinear Physics
非线性物理反演问题和成像
  • 批准号:
    1913309
  • 财政年份:
    2019
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Hybrid Imaging with Acoustic and Optics: Efficient Computation via Constructive Analysis
声学和光学混合成像:通过构造性分析进行高效计算
  • 批准号:
    1620473
  • 财政年份:
    2016
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Continuing Grant
Student Travel Support for the INFOCOM 2014 Conference
INFOCOM 2014 会议的学生旅行支持
  • 批准号:
    1417455
  • 财政年份:
    2014
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Realizing Visual and Acoustic Near Field Communication Systems for Smartphones: Performance Optimization and Security Assurance
NeTS:小型:协作研究:实现智能手机视觉和声学近场通信系统:性能优化和安全保证
  • 批准号:
    1421903
  • 财政年份:
    2014
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Computational Algorithms for Imaging, Design and Inverse Problems of Particle Propagation in Heterogeneous Media
异质介质中粒子传播的成像、设计和反问题的计算算法
  • 批准号:
    1321018
  • 财政年份:
    2013
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Enabling Robust Communication in Cognitive Radio Networks with Multiple Lines of Defense
NeTS:小型:协作研究:在具有多道防线的认知无线电网络中实现稳健通信
  • 批准号:
    1318948
  • 财政年份:
    2013
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
CAREER: Secure and Privacy-assured Data Service Outsourcing in Cloud Computing
职业:云计算中安全且有隐私保证的数据服务外包
  • 批准号:
    1262277
  • 财政年份:
    2012
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Mobile Content Distribution in Vehicular Ad Hoc Networks
NeTS:小型:协作研究:车载自组织网络中的移动内容分发
  • 批准号:
    1262275
  • 财政年份:
    2012
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324369
  • 财政年份:
    2023
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324368
  • 财政年份:
    2023
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Interface-aware numerical methods for stochastic inverse problems
随机反问题的接口感知数值方法
  • 批准号:
    DP210103092
  • 财政年份:
    2021
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Discovery Projects
Probabilistic numerical methods for Inverse Problems
反问题的概率数值方法
  • 批准号:
    2437932
  • 财政年份:
    2020
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Studentship
Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818847
  • 财政年份:
    2018
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818777
  • 财政年份:
    2018
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818941
  • 财政年份:
    2018
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Numerical Methods for Multiscale Inverse Problems and Applications to Sonar Imaging
多尺度反问题的数值方法及其在声纳成像中的应用
  • 批准号:
    1720306
  • 财政年份:
    2017
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了