TLS: Assessing and Predicting Scientific Progress through Computational Language Understanding
TLS:通过计算语言理解评估和预测科学进步
基本信息
- 批准号:0915730
- 负责人:
- 金额:$ 39.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project provides new approaches to the evaluation of scientific and technological promise. The basic insight is that scientific concepts, like organisms within ecologies, only exist in networks of supporting ideas, and this is key to understanding the way in which scientific concepts are adopted and diffused. The particular discipline that is studied is chemistry and related disciplines.The work has three stages. First, it assesses and predicts innovation in science from the novelty and popularity of terms and statements within a scientific network. Second, it assesses and predicts the integration of scientific knowledge from term and statement linkage, repetition, and elaboration patterns. Finally, it assesses and predicts success along the path from science to technology by linking term and statement connections to problems. The research uses cybertools to develop a very large database of scientific terms and statements across a broad corpus of published research and invention, including news, blogs, and other informal text as well as unpublished opinions. Intellectual MeritScientific evaluation, from awarding grants to reviewing tenure, has historically relied on quantity to proxy for quality. Progress is inferred from the amount of research produced or the sum of attention garnered. Numbers of books, articles, pages, citations and media mentions are tallied. These quantities are inexpensive to measure, but fail to directly capture whether a contribution is important. This project advances the measurement of scientific achievement by placing scientific claims in the context of past science. It does this by building on recent advances in computational language understanding, and the electronic availability of science. In particular, the project extracts scientific term and statements from a broad collection of published articles, patents and blogs in disciplines related to chemistry. These statements are supplemented with information about their social context -- their location in the network of authors and the geographical sprawl of global research institutions. Models are then developed that exploit patterns in the structure of scientific language to assess the importance of scientific programs and fields. The degree of innovation in science is assessed from the novelty and popularity of terms and statements within the broader network. The integration of scientific knowledge is assessed by examining the term and statement linkage, as well as repetition and elaboration patterns. These are, in turn, used to predict the path from science to Technology. The project also develops new methods for managing and processing large quantities of text and network data.Broader Impacts: The project develops general methods relevant for policy makers and scientists. This research generates, for example, high resolution, dynamic maps of knowledge claims in chemistry and neighboring disciplines such as pharmaceuticals and toxicology. The interactive nature of the maps means that they can serve as a teaching tool to help students understand scientific trends in their corner of science. They can also facilitate precise analysis of the production of science and stimulate the production of new hypotheses, as researchers note statements not made within the network of claims. When these maps are combined with the scientific models, they hold the potential to revolutionize the way scientists collaborate, identify research problems and validate hypotheses. Finally, because the research both clarifies what is published and where, as well as traces the careers of scientists and inventors,the research generates insights into what factors channel scientific attention, and how these factors can be harnessed to guide the most powerful public investments in innovation.
该项目为评价科技前景提供了新的途径。基本的观点是,科学概念,就像生态系统中的有机体一样,只存在于支持思想的网络中,这是理解科学概念被采用和传播的方式的关键。所研究的特定学科是化学及其相关学科。这项工作分为三个阶段。首先,它从科学网络中术语和陈述的新颖性和受欢迎程度来评估和预测科学创新。其次,它从术语和语句的联系、重复和阐述模式来评估和预测科学知识的整合。最后,它通过将术语和语句与问题联系起来,评估和预测从科学到技术的道路上的成功。这项研究使用网络工具开发了一个非常大的科学术语和陈述数据库,涵盖了广泛的已发表的研究和发明语料库,包括新闻、博客和其他非正式文本以及未发表的观点。从授予拨款到审查终身教职,科学评估历来依赖于数量而不是质量。进步是根据研究成果的数量或获得的关注的总和来推断的。统计书籍、文章、页面、引用和媒体提及的数量。这些数量的测量成本不高,但无法直接捕获贡献是否重要。该项目通过将科学主张置于过去科学的背景下,推进了对科学成就的衡量。它通过建立在计算机语言理解和科学的电子可用性方面的最新进展来实现这一点。特别是,该项目从与化学有关的学科的广泛的已发表的文章、专利和博客中提取科学术语和陈述。这些陈述还补充了关于它们的社会背景的信息——它们在作者网络中的位置和全球研究机构的地理分布。然后开发模型,利用科学语言结构中的模式来评估科学项目和领域的重要性。科学创新的程度是根据术语和陈述在更广泛的网络中的新颖性和受欢迎程度来评估的。科学知识的整合是通过检查术语和陈述联系,以及重复和阐述模式来评估的。反过来,这些又被用来预测从科学到技术的道路。该项目还开发了管理和处理大量文本和网络数据的新方法。更广泛的影响:该项目开发了与决策者和科学家相关的一般方法。例如,这项研究生成了化学和药学和毒理学等邻近学科知识要求的高分辨率动态地图。这些地图的互动性意味着它们可以作为一种教学工具,帮助学生在他们的科学领域了解科学趋势。它们还可以促进对科学成果的精确分析,并刺激新假设的产生,因为研究人员注意到在主张网络中没有做出的陈述。当这些地图与科学模型相结合时,它们有可能彻底改变科学家合作的方式,识别研究问题和验证假设。最后,由于该研究既澄清了发表的内容和地点,又追溯了科学家和发明家的职业生涯,因此该研究对引导科学注意力的因素以及如何利用这些因素来引导最有力的公共创新投资产生了深刻的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Evans其他文献
Spectral theory of regular sequences: parametrisation and spectral characterisation
规则序列的谱理论:参数化和谱表征
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Coons;James Evans;P. Gohlke;Neil Mañibo - 通讯作者:
Neil Mañibo
The importance of context for effective public engagement: learning from the governance of waste
背景对于有效公众参与的重要性:从废物治理中学习
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Bull;J. Petts;James Evans - 通讯作者:
James Evans
Introduction: Experimenting for sustainable development? Living laboratories, social learning and the role of the university
简介: 可持续发展试验?
- DOI:
10.4337/9781781003640.00007 - 发表时间:
2013 - 期刊:
- 影响因子:6.3
- 作者:
A. König;James Evans - 通讯作者:
James Evans
Characterizing the relationship in social media between language and perspective on science-based reasoning as justification for belief
描述社交媒体中语言与基于科学的推理观点之间的关系,作为信仰的理由
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
James Evans - 通讯作者:
James Evans
Accelerating Large-scale Adoption of Low Carbon Cleaner Production Development in Asian Developing Countries
- DOI:
- 发表时间:
2016-11 - 期刊:
- 影响因子:0
- 作者:
James Evans - 通讯作者:
James Evans
James Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Evans', 18)}}的其他基金
Examining temperatures and microgeochemical processes on fault slip surfaces with synchrotron methods
用同步加速器方法检查断层滑动表面的温度和微观地球化学过程
- 批准号:
1824852 - 财政年份:2018
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Team Success and Failure
协作研究:了解团队的成功和失败
- 批准号:
1829366 - 财政年份:2018
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
"JPI Urban Europe ENSUF" Learning Loops in the Public Realm
“JPI Urban Europe ENSUF”公共领域的学习循环
- 批准号:
ES/R003165/1 - 财政年份:2017
- 资助金额:
$ 39.57万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Collective Cognition and Group Performance
博士论文研究:集体认知与群体绩效
- 批准号:
1702788 - 财政年份:2017
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Evidence for Dynamic Weakening Mechanisms in the San Andreas Fault: Microgeochemistry and Microthermometry of Fault-related Rocks from SAFOD Core and Exhumed Faults
圣安德烈亚斯断层动态弱化机制的证据:来自 SAFOD 岩心和挖掘断层的断层相关岩石的微地球化学和微测温
- 批准号:
1619606 - 财政年份:2016
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Collaborative Research: Scaling Insight into Science: Assessing the value and effectiveness of machine assisted classification within a statistical system
协作研究:扩展对科学的洞察力:评估统计系统内机器辅助分类的价值和有效性
- 批准号:
1422902 - 财政年份:2014
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Tracing Influence & Predicting Impact in Science
追踪影响力
- 批准号:
1158803 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Fault Speedometers, Slip Localization, and Slip Complexity on Exhumed Faults
断层速度计、滑移定位和挖掘断层上的滑移复杂性
- 批准号:
0948473 - 财政年份:2010
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Assembly and Stability of Metal Nanostructures on Surfaces
表面金属纳米结构的组装和稳定性
- 批准号:
0809472 - 财政年份:2008
- 资助金额:
$ 39.57万 - 项目类别:
Continuing Grant
相似海外基金
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
- 批准号:
10106145 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
EU-Funded
NS-PEACE Neonatal Seizures -Predicting Epilepsy and Assessing Comparative Effectiveness.
NS-PEACE 新生儿癫痫发作 - 预测癫痫并评估比较有效性。
- 批准号:
10568397 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
预测爬梯过程中的打滑:评估鞋横档摩擦力的新方法
- 批准号:
10227650 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
I-Corps: Assessing Capabilities of Adaptive Learning for Predicting and Optimizing Local School-to-Workforce Talent Management Pipelines
I-Corps:评估自适应学习预测和优化当地学校到劳动力人才管理渠道的能力
- 批准号:
1954696 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
预测爬梯过程中的打滑:评估鞋横档摩擦力的新方法
- 批准号:
10411875 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
预测爬梯过程中的打滑:评估鞋横档摩擦力的新方法
- 批准号:
10783822 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Assessing and predicting native bee movement through changing landscapes
通过不断变化的景观评估和预测本地蜜蜂的运动
- 批准号:
539798-2019 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
University Undergraduate Student Research Awards
Predicting risk by assessing substrate and trigger for drug-induced arrhythmia
通过评估药物引起的心律失常的底物和触发因素来预测风险
- 批准号:
19K07106 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modern statistical techniques for assessing and predicting herbicide performance
用于评估和预测除草剂性能的现代统计技术
- 批准号:
1994216 - 财政年份:2018
- 资助金额:
$ 39.57万 - 项目类别:
Studentship
Predicting Treatment Response of Stress-Related Diseases by Assessing Individual Differences in Synaptic Plasticity
通过评估突触可塑性的个体差异来预测压力相关疾病的治疗反应
- 批准号:
18K07459 - 财政年份:2018
- 资助金额:
$ 39.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)