Molecular Mechanisms of Non-coding Bacterial Small RNAs in a Model Quorum Sensing System
群体传感模型系统中非编码细菌小 RNA 的分子机制
基本信息
- 批准号:0919821
- 负责人:
- 金额:$ 51.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: The overall goal of this research is to understand the role of non-coding small RNAs (sRNAs) in controlling cellular processes in bacteria including survival in the environment. The bacterium, Vibrio cholerae, uses cell-cell communication, or quorum sensing (QS), to synchronously regulate expression of four Qrr RNAs (quorum regulatory RNAs) in response to the density of the bacterial population. Recent studies demonstrated that the Qrr sRNAs, like other bacterial sRNAs, can regulate multiple target genes. Although V. cholerae is a transient human pathogen, it is a common inhabitant of the aquatic estuarine and marine ecosystems. This research project is designed to exploit the understanding of the model V. cholerae QS system to discover the role of the Qrr sRNAs in influencing microbial behaviors in diverse environmental settings. Specifically, this project will address the following aims. Aim 1: To identify genes controlled by the quorum sensing-regulated sRNAs. Aim 2: To define the molecular mechanism of sRNA regulation using genetic, biochemical, and computational methods. Aim 3: To assess the conservation of QS circuitry and function in V. cholerae strains isolated from diverse locations. Because sRNAs are involved in important biological functions in all domains of life, defining the mechanism by which these sRNAs act will have fundamental implications for understanding regulatory circuitry of all cellular systems. Moreover, bacterial cell-cell communication systems are widespread in environmentally, commercially, and clinically significant microbes. An understanding of how these signaling pathways function, and how they control bacterial survival in the environment can ultimately engender strategies to curtail world-wide problems of environmental, human, animal and plant health. Broader Impacts: The applicant engages in teaching and service activities aimed at disseminating modern scientific discovery and fostering interactions between members of the academic community and broader society. Training of students includes teaching an undergraduate lecture course and a course for upper level undergraduate Biology majors and graduate students in Prokaryotic Molecular Genetics. Collaborations initiated with researchers within the United States and in India promote international scientific and cultural exchange. Dr. Hammer has also developed an outreach program to engage ethnically diverse urban K-12 students in stimulating hands-on scientific activities that will be shared with local educators who teach under-represented minority students in the metro-Atlanta area. He is a volunteer for science outreach events at Georgia Tech and in the surrounding community, an ad hoc reviewer for multiple journals. He is an active teacher and mentor currently of three undergraduate and two graduate students, and one postdoctoral researcher.
智力优势:这项研究的总体目标是了解非编码小RNA(sRNA)在控制细菌细胞过程中的作用,包括在环境中的生存。 细菌霍乱弧菌使用细胞间通讯或群体感应(QS)来同步调节四种Qrr RNA(群体调节RNA)的表达,以响应细菌种群的密度。 最近的研究表明,Qrr sRNAs和其他细菌sRNAs一样,可以调控多个靶基因。 虽然霍乱弧菌是一种短暂的人类病原体,但它是水生河口和海洋生态系统的常见居民。 该研究项目旨在利用对模型霍乱弧菌QS系统的理解,以发现Qrr sRNAs在不同环境中影响微生物行为的作用。 具体而言,该项目将实现以下目标。 目的1:鉴定受群体感应调控的sRNAs调控的基因。 目的2:利用遗传学、生物化学和计算方法确定sRNA调控的分子机制。 目的3:评估从不同地点分离的霍乱弧菌菌株中QS回路和功能的保守性。 由于sRNA在生命的所有领域都参与重要的生物学功能,因此定义这些sRNA的作用机制将对理解所有细胞系统的调节回路具有根本意义。此外,细菌细胞间通讯系统广泛存在于环境、商业和临床上重要的微生物中。了解这些信号通路如何发挥作用,以及它们如何控制细菌在环境中的生存,最终可以产生减少环境,人类,动物和植物健康的全球性问题的战略。更广泛的影响:申请人从事教学和服务活动,旨在传播现代科学发现,促进学术界成员和更广泛的社会之间的互动。 学生的培训包括教授本科讲座课程和高级本科生物学专业和研究生的课程。 与美国和印度的研究人员开展的合作促进了国际科学和文化交流。 Hammer博士还开发了一项外展计划,让种族多元化的城市K-12学生参与刺激实践科学活动,这些活动将与亚特兰大大都会地区教授代表性不足的少数族裔学生的当地教育工作者分享。 他是格鲁吉亚理工学院和周边社区科学外展活动的志愿者,也是多个期刊的临时评审员。 他是一位活跃的教师和导师,目前有三名本科生和两名研究生,以及一名博士后研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Hammer其他文献
Brian Hammer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Hammer', 18)}}的其他基金
REU Site: Aquatic Chemical Ecology at Georgia Tech
REU 站点:佐治亚理工学院水生化学生态学
- 批准号:
1851723 - 财政年份:2019
- 资助金额:
$ 51.13万 - 项目类别:
Standard Grant
REU Site: Aquatic Chemical Ecology at Georgia Tech
REU 站点:佐治亚理工学院水生化学生态学
- 批准号:
1559923 - 财政年份:2016
- 资助金额:
$ 51.13万 - 项目类别:
Continuing Grant
REU Site: Aquatic Chemical Ecology at Georgia Tech
REU 站点:佐治亚理工学院水生化学生态学
- 批准号:
1262962 - 财政年份:2013
- 资助金额:
$ 51.13万 - 项目类别:
Continuing Grant
CAREER: The regulation of natural transformation in Vibrio
职业:弧菌自然转化的调节
- 批准号:
1149925 - 财政年份:2012
- 资助金额:
$ 51.13万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Elucidating molecular mechanisms of the water-induced swallowing reflex under non-thirsty and thirsty conditions: the importance of TRPV4
阐明非口渴和口渴条件下水诱导吞咽反射的分子机制:TRPV4的重要性
- 批准号:
24K12880 - 财政年份:2024
- 资助金额:
$ 51.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chaperone protection in Lewy body and Alzheimer’s dementias: determining the structural, molecular and cellular mechanisms of a novel, non-canonical Hsp70 action blocking a-synuclein oligomerization
路易体和阿尔茨海默氏痴呆中的伴侣保护:确定阻断 α-突触核蛋白寡聚化的新型非典型 Hsp70 作用的结构、分子和细胞机制
- 批准号:
10649331 - 财政年份:2023
- 资助金额:
$ 51.13万 - 项目类别:
Molecular mechanisms of inherent drug resistance in non-tuberculous mycobacteria
非结核分枝杆菌固有耐药性的分子机制
- 批准号:
10771645 - 财政年份:2023
- 资助金额:
$ 51.13万 - 项目类别:
Elucidation of molecular mechanisms of SBP1-based regulation of non-alcoholic fatty liver development/progression
阐明基于 SBP1 调节非酒精性脂肪肝发生/进展的分子机制
- 批准号:
23K10862 - 财政年份:2023
- 资助金额:
$ 51.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms underlying the regulation of gene expression by non-coding RNAs in archaea
古细菌非编码RNA调控基因表达的分子机制
- 批准号:
2223488 - 财政年份:2022
- 资助金额:
$ 51.13万 - 项目类别:
Standard Grant
Identifying molecular mechanisms of canonical versus non-canonical E2 ubiquitin conjugating enzymes
识别经典与非经典 E2 泛素结合酶的分子机制
- 批准号:
568073-2022 - 财政年份:2022
- 资助金额:
$ 51.13万 - 项目类别:
Postdoctoral Fellowships
Molecular mechanisms of dormancy and germination in parasitic and non-parasitic plants
寄生和非寄生植物休眠和发芽的分子机制
- 批准号:
RGPIN-2017-06752 - 财政年份:2022
- 资助金额:
$ 51.13万 - 项目类别:
Discovery Grants Program - Individual
Molecular and Cellular signaling mechanisms of TRPV4 in non-neuronal cells: a pathophysiological relevance for migraine pain.
非神经元细胞中 TRPV4 的分子和细胞信号传导机制:与偏头痛的病理生理学相关性。
- 批准号:
10371665 - 财政年份:2021
- 资助金额:
$ 51.13万 - 项目类别:
Assessing the physiological relevance and molecular mechanisms of non-canonical ubiquitylation
评估非典型泛素化的生理相关性和分子机制
- 批准号:
MR/V025759/1 - 财政年份:2021
- 资助金额:
$ 51.13万 - 项目类别:
Fellowship
Molecular and Cellular signaling mechanisms of TRPV4 in non-neuronal cells: a pathophysiological relevance for migraine pain.
非神经元细胞中 TRPV4 的分子和细胞信号传导机制:与偏头痛的病理生理学相关性。
- 批准号:
10532165 - 财政年份:2021
- 资助金额:
$ 51.13万 - 项目类别: