RUI: Multilayer Neural Network With Multi-Valued Neurons, its Application to Image Recognition and Processing and Incorporation of the Research Results into the Educational Process

RUI:具有多值神经元的多层神经网络,其在图像识别和处理中的应用以及将研究成果纳入教育过程

基本信息

  • 批准号:
    0925080
  • 负责人:
  • 金额:
    $ 29.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Abstract"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)"The project focuses on the development of a new tool for solving pattern recognition problems. This tool is based on the application of an original artificial neural network ? multilayer neural network with multi-valued neurons. This network has a simple and productive learning algorithm, which allows to solve recognition and classification problems that are difficult to approach using other techniques. An example is multiple-class classification problems. The project involves solving multiple-class image recognition problems, such as texture classification, textural segmentation, blurred images recognition, and intelligent edge detection.The research involves study of nonlinear phenomena of a multilayer neural network based on multi-valued neurons (MLMVN). A multi-valued neuron (MVN) is a complex-valued neuron whose inputs and output are located on the unit circle. A multilayer neural network based on this neuron has a derivative-free self-adaptive learning algorithm. It outperforms other techniques in terms of training speed and classification/prediction rates. The following problems are considered in this project. The relationship between the topology of MLMVN and the quality of multiple-class classification is investigated. MLMVN is used for texture classification, textural segmentation, and as an edge detector for noisy images. The Fourier phase spectrum is used as a feature space for blurred images recognition using MLMVN. A hardware implementation of MVN and MLMVN is also considered. These studies will involve undergraduate students, who participate in scientific research as part of their education at Texas A&M-Texarkana. Hence, in addition to obtaining answers to fundamental questions related to artificial neural networks and pattern recognition, this project also is closely tied to educating students who will become scientists and engineers.
摘要“该奖项由2009年美国复苏和再投资法案(公法111-5)资助”该项目的重点是开发解决模式识别问题的新工具。该工具是基于原始人工神经网络的应用?多值神经元多层神经网络该网络具有简单而高效的学习算法,可以解决使用其他技术难以解决的识别和分类问题。一个例子是多类分类问题。该项目涉及解决多类图像识别问题,如纹理分类、纹理分割、模糊图像识别和智能边缘检测,研究基于多值神经元的多层神经网络(MLMVN)的非线性现象。多值神经元(MVN)是一种复值神经元,其输入和输出位于单位圆上。基于该神经元的多层神经网络具有无导数的自适应学习算法。它在训练速度和分类/预测率方面优于其他技术。本项目考虑了以下问题。研究了MLMVN的拓扑结构与多类分类质量之间的关系。MLMVN用于纹理分类,纹理分割,并作为噪声图像的边缘检测器。傅立叶相位谱作为特征空间,用于模糊图像的MLMVN识别。MVN和MLMVN的硬件实现也被认为是。这些研究将涉及本科生,他们参加科学研究作为他们在德克萨斯州A M-Texarkana教育的一部分。因此,除了获得与人工神经网络和模式识别相关的基本问题的答案外,该项目还与教育将成为科学家和工程师的学生密切相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Aizenberg其他文献

Why We Need Complex-Valued Neural Networks?
为什么我们需要复值神经网络?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Igor Aizenberg
  • 通讯作者:
    Igor Aizenberg
Erratum to: Image processing using cellular neural networks based on multi-valued and universal binary neurons

Igor Aizenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
  • 批准号:
    2327754
  • 财政年份:
    2024
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Unravelling Efficient Nucleic Acid Delivery Using Multilayer Nanoparticles
使用多层纳米粒子揭示有效的核酸输送
  • 批准号:
    DP240102642
  • 财政年份:
    2024
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Discovery Projects
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
  • 批准号:
    EP/Y003276/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Research Grant
CAREER: Using a multilayer plant-pollinator and fruit-frugivore network along a defaunation gradient to understand the combined influence of mutualisms on forest communities
职业:沿着动物区系丧失梯度使用多层植物传粉者和水果食果动物网络来了解互利共生对森林群落的综合影响
  • 批准号:
    2335783
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
  • 批准号:
    23K13655
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Decision Making, Learning, and Incentive Design in Multilayer Networks
职业:多层网络中的决策、学习和激励设计
  • 批准号:
    2416311
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
Development of Erosion-Resistant Cr/CrN Multilayer Coating Films with High Crack Growth Retardation Effect
具有高裂纹扩展延迟效果的耐冲蚀 Cr/CrN 多层涂膜的开发
  • 批准号:
    23K03576
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ATD: Multiscale Anomaly Detection in Spatio-Temporal Multilayer Networks Encoding Human Mobility
ATD:编码人类移动性的时空多层网络中的多尺度异常检测
  • 批准号:
    2319250
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
CAREER:Superconductivity, fractionalization and quantum criticality in multilayer quantum simulator
职业:多层量子模拟器中的超导、分级和量子临界性
  • 批准号:
    2237031
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了