Collaborative Research: A Pilot Study of the Spatiotemporal Scales of Diversification in the Pandora Moth/Ponderosa Pine System Using Dendrochronology and Evolutionary Biogeography

合作研究:利用树木年代学和进化生物地理学对潘多拉蛾/黄松系统多样化的时空尺度进行初步研究

基本信息

  • 批准号:
    0926751
  • 负责人:
  • 金额:
    $ 13.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Natural disturbances such as fires and pests are the primary factors influencing landscape patterns and processes over broad parts of the Earth. In the montane forests of the North American west, insect outbreaks and fire constitute the dominant disturbance agents, while climate change may be an increasingly important complicating factor. Disturbances are influenced by processes occurring across a variety of spatial and temporal scales. They therefore can produce spatio-temporal patterns that can be studied in a nested hierarchical fashion. Interactions between species, such as among plants and their insect pathogens, may also be so characterized. The investigators will examine how abiotic and biotic disturbances interact using the ponderosa pine-pandora moth model system. In particular, they are interested in how disturbance ecology drives diversification in both organisms across multiple spatial and temporal scales. Ponderosa pine ecosystems are chosen as they constitute one of the most important commercially logged forests in the western United States. The native pandora moth is the most widespread insect defoliator of ponderosa pine trees, and is an important concern of forest managers. Pandora moth outbreaks produce characteristic tree-ring patterns that can be detected through the dendrochronological techniques also used to detect and date fire events and climatic conditions. Tree-ring reconstructions will be developed for pandora moth, climate, fire, and stand-age structure from ten strategically located plots within the range of the ponderosa pine-pandora moth system. The ten resulting chronologies will be examined for cyclic patterns with wavelet analysis to help distinguish the relative influences of episodic insect outbreaks, drought, and fire. The investigators will also conduct reconstructions of all of these environmental variables to document the spatial and temporal scales over which they operate, providing specific reconstructions for forest managers at each site. Spatial patterns of genetic diversity and relationships among populations of the pandora moth will be determined from DNA-based genetic markers and analyzed in conjunction with the other analyses. The findings have the potential to result in a large network of insect outbreak histories, one that eventually will span the entire spatial extent of the pine-moth system. This network will enable analysis of insect outbreak dynamics on spatial scales that have not previously been explored, and will provide an important framework that can be used to generate and test hypotheses regarding the interaction of multiple disturbances, and the processes driving diversification in ponderosa pine and pandora moth. The results produced by this study will provide a framework for future investigations into the disturbance ecology and evolutionary biogeography of plant-herbivore systems. The research will result in a broad network of tree-ring chronologies that will fill gaps in the International Tree Ring Data Bank holdings. This project also provides resources for the involvement of a team of undergraduate and graduate students as well as K-12 teachers in the field research and laboratory analyses.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。火灾和虫害等自然干扰是影响地球大部分地区景观格局和过程的主要因素。在北美西部的山地森林中,昆虫爆发和火灾是主要的干扰因素,而气候变化可能是一个日益重要的复杂因素。扰动受到各种时空尺度上发生的过程的影响。因此,它们可以产生时空模式,可以在一个嵌套的层次方式进行研究。物种之间的相互作用,如植物与其昆虫病原体之间的相互作用,也可以这样描述。研究人员将使用黄松-潘多拉蛾模型系统研究非生物和生物干扰如何相互作用。特别是,他们感兴趣的是干扰生态学如何在多个空间和时间尺度上驱动这两种生物的多样化。选择黄松生态系统是因为它们构成了美国西部最重要的商业采伐森林之一。本土的潘多拉蛾是黄松最广泛的食叶昆虫,也是森林管理者的重要关注点。潘多拉蛾的爆发产生了特征性的树木年轮模式,可以通过树木年代学技术来检测,这种技术也用于检测火灾事件和气候条件并确定其日期。树轮重建将制定潘多拉蛾,气候,火,从10个战略位置的地块内的黄松潘多拉蛾系统的范围内的林分年龄结构。十个由此产生的年表将被检查的循环模式与小波分析,以帮助区分相对影响的情节昆虫爆发,干旱和火灾。调查人员还将对所有这些环境变量进行重建,以记录它们运作的空间和时间尺度,为每个地点的森林管理人员提供具体的重建。从基于DNA的遗传标记中确定潘多拉蛾种群间遗传多样性和关系的空间格局,并与其他分析相结合进行分析。这些发现有可能导致一个大型的昆虫爆发历史网络,最终将跨越松毛虫系统的整个空间范围。该网络将使昆虫爆发动态的空间尺度上,以前没有被探索的分析,并将提供一个重要的框架,可用于生成和测试假设的相互作用的多个干扰,并在黄松和潘多拉蛾驱动多样化的过程。本研究的结果将为进一步研究植物-食草动物系统的干扰生态学和进化地理学提供一个框架。这项研究将建立一个广泛的树木年轮年表网络,填补国际树木年轮数据库的空白。该项目还为本科生和研究生团队以及K-12教师参与实地研究和实验室分析提供了资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stacy Jorgensen其他文献

Stacy Jorgensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stacy Jorgensen', 18)}}的其他基金

Doctoral Dissertation Research: Applying Bathymetric LiDAR to Advance Marine Landscape Ecology in the Third Dimension
博士论文研究:应用测深激光雷达推进三维海洋景观生态学
  • 批准号:
    1003871
  • 财政年份:
    2010
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320148
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
  • 批准号:
    2229976
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Pilot observations of enhanced near-bottom equatorial turbulence
合作研究:RAPID:增强近底赤道湍流的试点观测
  • 批准号:
    2309409
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Social Media Co-Pilot: Enhancing Teens’ Digital Literacy and Cyber Safety Education with AI-based Conversational Intervention
合作研究:社交媒体副驾驶:通过基于人工智能的对话干预提高青少年的数字素养和网络安全教育
  • 批准号:
    2302976
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Building a strong community of computational researchers empowered in the use of novel cutting-edge technologies
协作研究:网络培训:试点:建立一个强大的计算研究人员社区,有权使用新颖的尖端技术
  • 批准号:
    2320990
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
  • 批准号:
    2229975
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320147
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cybertraining to Develop FAIR Data Competencies for Bioengineering Students
合作研究:网络培训:试点:通过网络培训为生物工程学生培养公平数据能力
  • 批准号:
    2321121
  • 财政年份:
    2023
  • 资助金额:
    $ 13.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了