BRIGE: The Fabrication of a Novel, Full Thickness, Artificial Bone Graft for Bone Tissue Engineering
BRIGE:用于骨组织工程的新型全层人工骨移植物的制造
基本信息
- 批准号:0926970
- 负责人:
- 金额:$ 17.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0926970FreemanBone loss due to trauma or disease is prevalent in the U.S. Over 3 million orthopaedic procedures are performed every year; approximately 500,000 of these are bone grafting procedures making bone second only to blood as the most transplanted material. Bone loss is usually treated using autografts or allografts. Although they do have their benefits, each of these materials has a set of drawbacks which limit the extent of their use. With this in mind, the objective of this project is to use tissue engineering to create new scaffolds as practical and functional alternatives for bone replacement and regeneration. The new scaffolds will have a nanofibrous structure and be structurally similar to natural bone, containing both cortical and trabecular areas and microvascularization. To accomplish this task we will complete the following objectives: 1) Perform a finite element analysis to discover the nanofiber orientation necessary for the scaffold to bear the appropriate load. 2) Construct fully mineralized, porous, nanofibrous scaffolds for trabecular bone by combining techniques for nanofiber mineralization, pore creation, and sintering. 3) Creating cortical bone like structures with vascular channels using electrospinning techniques with microfibers and nanofiber mineralization. 4) Creating a full thickness, porous load bearing scaffold by combining the trabecular and cortical scaffolds with sintering techniques. The resulting structure will be engineered from mineralized poly (L-lactic acid) nanofibers and will be designed to withstand the forces experienced in load bearing bones while having enough porosity to allow for full thickness cellular and tissue infiltration. Intellectual Merit: Although many studies have created scaffolds to replace bone, most of these seek to only replace trabecular bone. No currently available scaffold or technique seeks to mimic the structure and properties of both trabecular and cortical bone, including correctly placed vasculature. The creation of this scaffold would also lead to a solution to the problem of cell movement in nanofiber scaffolds. Typically the pores in nanofibrous scaffolds are too small to allow significant cellular infiltration. The method of micro-porous nanofibrous scaffold fabrication described in this project would solve this problem and could be used for the other tissue engineering applications. Broader Impacts: The proposed research will advance the field of tissue engineering through the creation of nanofibrous scaffolds that do not hinder cell motility and the production of a full thickness bone graft. This research will provide an opportunity for many students to gain experience in experimental design, data analysis, engineering, and the ability to work in a group environment. Dr. Freeman is devoted to establishing outreach programs to recruit students from underrepresented groups into engineering and science. Currently, he mentors graduate students from all segments of underrepresentation. Since arriving at Virginia Tech over 2 years ago he has also mentioned 3 undergraduates of underrepresented groups. Dr. Freeman is involved in the Multicultural Academic Opportunities Program (MAOP) and the Center for the Enhancement of Engineering Diversity (CEED) at Virginia Tech. Students will be chosen from these programs to conduct research based on this project. He will use aspects from this project in his presentations to encourage student interest in math, science, and engineering.
0926970弗里曼在美国,由于创伤或疾病导致的骨丢失很普遍。每年进行超过300万例矫形手术;其中约50万例是骨移植手术,使骨成为仅次于血液的最大移植材料。骨丢失通常使用自体移植物或同种异体移植物治疗。虽然它们确实有其优点,但这些材料中的每一种都有一系列限制其使用范围的缺点。考虑到这一点,本项目的目标是使用组织工程来创建新的支架,作为骨替代和再生的实用和功能性替代品。新的支架将具有纳米纤维结构,在结构上与天然骨相似,包含皮质和小梁区域以及微血管化。为了完成这项任务,我们将完成以下目标:1)进行有限元分析,以发现脚手架承受适当载荷所需的方向。2)通过结合骨矿化、造孔和烧结技术,构建完全矿化的多孔纳米纤维骨小梁支架。3)使用微纤维和微矿化的静电纺丝技术创建具有血管通道的皮质骨样结构。4)通过结合骨小梁和皮质支架与烧结技术来创建全厚度多孔承重支架。所得到的结构将由矿化的聚(L-乳酸)纳米纤维设计,并且将被设计为承受承重骨中经历的力,同时具有足够的孔隙率以允许全厚度细胞和组织浸润。智力优势:尽管许多研究已经创造了支架来替代骨,但大多数研究都只寻求替代骨小梁。目前没有可用的支架或技术试图模拟小梁骨和皮质骨的结构和性质,包括正确放置的脉管系统。这种支架的创建也将导致解决细胞在支架中移动的问题。通常,纳米纤维支架中的孔太小而不允许显著的细胞浸润。本计画所描述的微多孔奈米纤维支架制造方法将解决此问题,并可用于其他组织工程的应用。更广泛的影响:这项拟议中的研究将通过创造不阻碍细胞运动的纳米纤维支架和生产全厚度骨移植物来推进组织工程领域。这项研究将为许多学生提供一个机会,以获得经验,实验设计,数据分析,工程,并在一个小组的环境中工作的能力。弗里曼博士致力于建立外展计划,从代表性不足的群体招募学生进入工程和科学。目前,他指导来自代表性不足的各个领域的研究生。自从2年前来到弗吉尼亚理工大学以来,他还提到了3名代表性不足的本科生。弗里曼博士参与了弗吉尼亚理工大学的多元文化学术机会计划(MAOP)和工程多样性增强中心(CEED)。学生将从这些程序中选择进行基于这个项目的研究。 他将在他的演讲中使用这个项目的各个方面,以鼓励学生对数学,科学和工程的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Freeman其他文献
Daptomycin for the treatment of vancomycin-resistant enterococcal infections.
达托霉素用于治疗耐万古霉素肠球菌感染。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:5.2
- 作者:
S. Grim;I. Hong;Joseph Freeman;C. Edwards;N. Clark - 通讯作者:
N. Clark
Nanostructure-enhanced proliferative therapy for ligaments and tendons
韧带和肌腱的纳米结构增强增殖疗法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
E. Ekwueme;Yvonne M. Empson;Joseph Freeman - 通讯作者:
Joseph Freeman
A Wirelessly Tunable Electrical Stimulator for Ionic Electroactive Polymers
用于离子电活性聚合物的无线可调电刺激器
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.3
- 作者:
Yi Huang;D. Browe;Joseph Freeman;L. Najafizadeh - 通讯作者:
L. Najafizadeh
Correction to: Three-Dimensional Porous Trabecular Scaffold Exhibits Osteoconductive Behaviors In Vitro
- DOI:
10.1007/s40883-021-00245-8 - 发表时间:
2022-10-13 - 期刊:
- 影响因子:1.900
- 作者:
Brittany L. Taylor;Isabel Perez;James Ciprano;Chinyere Onyekachi Utaegbulam Freeman;Aaron Goldstein;Joseph Freeman - 通讯作者:
Joseph Freeman
A low drop-out regulator for subcutaneous electrical stimulation of nanofibers used in muscle prosthesis
用于肌肉假体中纳米纤维皮下电刺激的低压差调节器
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yi Huang;Fanpeng Kong;Joseph Freeman;L. Najafizadeh - 通讯作者:
L. Najafizadeh
Joseph Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Freeman', 18)}}的其他基金
Injectable Nanoparticles for Soft Tissue Recovery and Strength Enhancement
用于软组织恢复和强度增强的可注射纳米颗粒
- 批准号:
2207577 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
Microelectronically Stimulating and Actuating Nanofibers for Muscle Replacement and Regeneration
微电子刺激和驱动纳米纤维用于肌肉替代和再生
- 批准号:
1408202 - 财政年份:2014
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
A Novel Treatment for Connective Tissue in Ehlers-Danlos Patients and Strained and Sprained Ligaments: Investigating Carbon Nanostructure Enhanced Prolotherapy
针对 Ehlers-Danlos 患者结缔组织以及韧带拉伤和扭伤的新疗法:研究碳纳米结构增强增殖疗法
- 批准号:
1243144 - 财政年份:2011
- 资助金额:
$ 17.48万 - 项目类别:
Continuing Grant
A Novel Treatment for Connective Tissue in Ehlers-Danlos Patients and Strained and Sprained Ligaments: Investigating Carbon Nanostructure Enhanced Prolotherapy
针对 Ehlers-Danlos 患者结缔组织以及韧带拉伤和扭伤的新疗法:研究碳纳米结构增强增殖疗法
- 批准号:
1034026 - 财政年份:2010
- 资助金额:
$ 17.48万 - 项目类别:
Continuing Grant
相似海外基金
fabrication of supersaturated solid solution thermoelectric materials utilizing novel spherical composite powder preparation technology and laser powder bed fusion
利用新型球形复合粉末制备技术和激光粉末床熔融制备过饱和固溶体热电材料
- 批准号:
23K13572 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design and Fabrication of a Novel Biomass Sensor
新型生物质传感器的设计与制造
- 批准号:
EP/Y027914/1 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Fellowship
NSF-BSF: Computation-Guided Advanced Fabrication of Silicide Nanostructures with Novel Magnetic Properties
NSF-BSF:计算引导的具有新颖磁性的硅化物纳米结构的先进制造
- 批准号:
2212324 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
SBIR Phase I: Design and Fabrication of Novel Microfluidic Devices for STEM Education
SBIR 第一阶段:用于 STEM 教育的新型微流体设备的设计和制造
- 批准号:
2112200 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
Development of a novel fabrication process for oxide-dispersion strengthened alloy via 3D printing
通过 3D 打印开发氧化物弥散强化合金的新型制造工艺
- 批准号:
22H01801 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cutting the Edge - a Plasma Focused Ion Beam (PFIB) facility for supporting UK research in novel 3D materials research and device fabrication
Cutting the Edge - 等离子体聚焦离子束 (PFIB) 设施,用于支持英国新型 3D 材料研究和设备制造方面的研究
- 批准号:
EP/W036576/1 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Research Grant
Novel fabrication of electronic textiles based wearable technology
基于可穿戴技术的电子纺织品的新型制造
- 批准号:
10047139 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Grant for R&D
Fabrication, characterization and application of novel, highly stable, carbene-based self-assembled monolayers
新型、高度稳定的卡宾基自组装单分子层的制备、表征和应用
- 批准号:
RGPIN-2019-04038 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Discovery Grants Program - Individual
Design and Fabrication of Novel Near-Field Thermophotovoltaics for Waste Energy Recycling
用于废物能源回收的新型近场热光伏发电的设计和制造
- 批准号:
559739-2021 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Growth, Fabrication, and Characterization of Novel Semiconductor Nanostructures
新型半导体纳米结构的生长、制造和表征
- 批准号:
RGPIN-2018-06480 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Discovery Grants Program - Individual