GOALI: Quality Mining - A Novel Framework for Quality Monitoring and Control for Data-rich Manufacturing Systems

GOALI:质量挖掘 - 数据丰富的制造系统质量监控的新框架

基本信息

项目摘要

This grant provides funding to develop new quality tools for manufacturing systems through incorporating computer and information science principles, such as those used in web mining. These newly envisioned quality methods will make use of data mining techniques such as association, clustering, and significance as a means of handling large amounts of process and product data being collected in current complex manufacturing systems in order to transform the data into usable knowledge. These new quality tools will be developed to store, organize, analyze, model, and visualize large, heterogeneous data sets associated with manufacturing systems for continuous quality and reliability quantification and improvement. These techniques will transform the current data-push quality approach, where reports are often generated without a clear purpose, into a data pull system where the quality system will reflect an awareness of the task environment while reacting to a fault (alarm condition) or a user query. This work includes a strong collaboration with QMC LLC, a data management company who will implement the developed tools, FARO, provider of dimensional data acquisition systems, and Ford Motor Company, who will provide a test bed to validate the proposed tools in an industrial environment. The results of this research will redefine current quality control methods through transforming low-level data into high-content information leading to a deeper understanding of manufacturing and service systems. This will allow for quicker and more accurate failure detections, leading to a significant increase in quality. In addition, the ability to effectively handle data-rich manufacturing systems will stimulate the development and incorporation of advanced sensor and data collection techniques. This will produce a continuous quality improvement attitude based upon heterogeneous data management.
这项拨款提供资金,通过结合计算机和信息科学原理,例如在网络挖掘中使用的原理,为制造系统开发新的高质量工具。这些新设想的质量方法将利用数据挖掘技术,如关联、聚类和重要性,作为处理当前复杂制造系统中收集的大量过程和产品数据的手段,以便将数据转换为可用的知识。这些新的质量工具将用于存储、组织、分析、建模和可视化与制造系统相关的大型异构数据集,以实现持续的质量和可靠性量化和改进。这些技术将把当前的数据推式质量方法(报告通常是在没有明确目的的情况下生成的)转变为数据拉式系统,在这种系统中,质量系统将在对故障(警报条件)或用户查询作出反应时反映对任务环境的认识。这项工作包括与QMC LLC(数据管理公司,负责实施开发的工具)、FARO(维度数据采集系统供应商)和福特汽车公司(福特汽车公司将提供一个测试平台,在工业环境中验证所提出的工具)的强有力合作。本研究的结果将重新定义当前的质量控制方法,通过将低级数据转换为高内容信息,从而更深入地了解制造和服务系统。这将允许更快、更准确的故障检测,从而显著提高质量。此外,有效处理数据丰富的制造系统的能力将刺激先进传感器和数据收集技术的发展和结合。这将产生基于异构数据管理的持续质量改进态度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaime Camelio其他文献

Enhancing manufacturing operations with synthetic data: a systematic framework for data generation, accuracy, and utility
利用合成数据增强制造运营:数据生成、准确性和实用性的系统框架

Jaime Camelio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaime Camelio', 18)}}的其他基金

CPS: Synergy: Collaborative Research: Cyber-Physical Approaches to Advanced Manufacturing Security
CPS:协同:协作研究:先进制造安全的网络物理方法
  • 批准号:
    1446804
  • 财政年份:
    2015
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Cooperative Agreement
I-Corps Teams: An Investigation on the Commercial Potential of Advanced Filtration Media
I-Corps 团队:对先进过滤介质商业潜力的调查
  • 批准号:
    1542241
  • 财政年份:
    2015
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
GOALI: Robust Quality Control Tools for Cyber-Physical Manufacturing Systems: Assessing and Eliminating Cyber-Attack Vulnerabilities
GOALI:用于网络物理制造系统的强大质量控制工具:评估和消除网络攻击漏洞
  • 批准号:
    1436365
  • 财政年份:
    2014
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
EAGER: A Self-Healing Approach for Smart Assembly Systems
EAGER:智能装配系统的自我修复方法
  • 批准号:
    0918055
  • 财政年份:
    2009
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant

相似海外基金

Mining Modern App Stores to Improve the Perceived Quality of Software Products
挖掘现代应用程序商店以提高软件产品的感知质量
  • 批准号:
    RGPIN-2021-03969
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Mining Software Repositories to Improve Software Quality
挖掘软件存储库以提高软件质量
  • 批准号:
    575133-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
    University Undergraduate Student Research Awards
Developing a continuous quality control method for the sawmilling process using sensory features and advanced data mining approaches
使用感官特征和先进的数据挖掘方法开发锯木加工过程的连续质量控制方法
  • 批准号:
    RGPIN-2022-03581
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Mining Modern App Stores to Improve the Perceived Quality of Software Products
挖掘现代应用程序商店以提高软件产品的感知质量
  • 批准号:
    DGECR-2021-00270
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Launch Supplement
Mining Modern App Stores to Improve the Perceived Quality of Software Products
挖掘现代应用程序商店以提高软件产品的感知质量
  • 批准号:
    RGPIN-2021-03969
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Mining Software Repositories to Improve Software Quality
挖掘软件存储库以提高软件质量
  • 批准号:
    551740-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
    University Undergraduate Student Research Awards
Mining Software Repositories to Improve Software Quality
挖掘软件存储库以提高软件质量
  • 批准号:
    541628-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
    University Undergraduate Student Research Awards
Measuring, Mining and Understanding Communication Behaviors: Markers for Quality Healthcare
测量、挖掘和理解沟通行为:优质医疗保健的标志
  • 批准号:
    9883635
  • 财政年份:
    2018
  • 资助金额:
    $ 30.45万
  • 项目类别:
Mining Code Commits for Enhanced Software Quality
挖掘代码提交以提高软件质量
  • 批准号:
    509489-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Engage Grants Program
Development of assessment methods for aiding quality-oriented software development based on data-mining approach and their improvement
基于数据挖掘方法的辅助质量导向软件开发评估方法的开发及其改进
  • 批准号:
    15K01208
  • 财政年份:
    2015
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了