Fundamental investigation of transport phenomena in convectively actuated biochemical reactors
对流驱动生化反应器中输运现象的基础研究
基本信息
- 批准号:0933688
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0933688UgazA major opportunity in the development of medical diagnostic instrumentation is the highly inefficient design of conventional polymerase chain reaction (PCR) thermocycling hardware. Operation of such hardware is slow, expensive, and consumes considerable electrical power to repeatedly heat and cool the reagent mixture. An alternative thermocycling approach is to harness natural convection to perform rapid DNA amplification via the PCR. The proposed design makes use of natural convection, is inherently simple, and consumes minimal electrical power making it well suited for portable applications. This research is aimed at understanding the fundamental processes that underlie thermally driven biochemical reactions in convective flow fields. The underlying structure of these flows is characterized by rich complexity because of operation in a transition regime associated with the onset of buoyancy driven turbulence. This regime has not been extensively probed owing to challenges associated with the inherently chaotic motion. The research involves detailed 3D characterization of velocity and temperature fields inside PCR reactors using coordinated particle image velocimetry and laser induced fluorescence of dispersed thermochromic seed particles. Computational fluid dynamic studies will determine the extent to which the observed phenomena can be captured. These results will (1) guide development of improved computational techniques and constitutive models which in turn will (2) enable the design of new convective thermocycling devices for ultra rapid PCR.Intellectual Merit: The experimental and computational capabilities developed will deliver new insights and innovations by probing complex single and multiphase flows at the micro and nanoscales with a level of spatial and temporal resolution that is currently unavailable.Broader Impacts: The potential to achieve an order of magnitude increase in reaction speed will spur development of portable, inexpensive, and rugged DNA analysis instrumentation. In addition to the commercial impact associated with making PCR more affordable, this technology will spawn new ways to teach physics and molecular biology through the development of educational experiences for undergraduates at the interface between the physical, chemical, and life sciences. The underlying principles of this technology are highly relatable (for example, the flow is established in the same way as in a lava lamp), making it ideal to target K12 audiences in addition to undergraduate students. This will provide an innovative way for students to see how fundamental knowledge can be applied to produce real, working products.
医疗诊断仪器发展中的一个主要机会是传统聚合酶链反应(PCR)热循环硬件的非常低效的设计。这种硬件的操作是缓慢的、昂贵的,并且消耗相当大的电力来重复地加热和冷却试剂混合物。另一种热循环方法是利用自然对流通过PCR进行快速DNA扩增。所提出的设计利用自然对流,本质上是简单的,并且消耗最小的电力,使得其非常适合于便携式应用。这项研究的目的是了解的基本过程,热驱动的对流场中的生化反应。这些流动的基本结构的特点是丰富的复杂性,因为在过渡制度与浮力驱动的湍流的发病相关的操作。由于与固有的混沌运动相关的挑战,该机制尚未被广泛探讨。该研究涉及详细的三维表征的速度和温度场的PCR反应器内使用协调粒子图像测速和激光诱导荧光分散的热致变色种子颗粒。计算流体动力学研究将确定所观察到的现象可以被捕获的程度。这些结果将(1)指导改进的计算技术和本构模型的开发,这反过来又将(2)使得能够设计用于超快速PCR的新的对流热循环装置。开发的实验和计算能力将提供新的见解和创新,通过探测复杂的单相和多相流在微米和纳米尺度的空间和时间分辨率的水平,更广泛的影响:实现反应速度的数量级增加的潜力将刺激便携式、廉价和坚固的DNA分析仪器的发展。 除了与使PCR更实惠相关的商业影响外,该技术还将通过在物理,化学和生命科学之间的界面上为本科生开发教育经验来产生教授物理学和分子生物学的新方法。这项技术的基本原理是高度相关的(例如,流量是以与熔岩灯相同的方式建立的),因此除了本科生之外,它还非常适合针对K12受众。这将为学生提供一种创新的方式,让他们了解如何将基础知识应用于生产真实的工作产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Ugaz其他文献
Victor Ugaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Ugaz', 18)}}的其他基金
Chaotic synchronization of surface chemistry and vesicular assembly in hydrothermal microenvironments
水热微环境中表面化学和囊泡组装的混沌同步
- 批准号:
1807441 - 财政年份:2018
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
I-Corps: Biodegradable 3D-Printed Oil Absorbents
I-Corps:可生物降解的 3D 打印吸油剂
- 批准号:
1740388 - 财政年份:2017
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Privacy-enhancing CrowdPCR for Early Epidemic Detection
EAGER:合作研究:用于早期流行病检测的增强隐私的 CrowdPCR
- 批准号:
1645285 - 财政年份:2016
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Rapid screening of biomolecular conformation and binding interactions
快速筛选生物分子构象和结合相互作用
- 批准号:
1605167 - 财政年份:2016
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Noise-synchronized Electrophoretic Manipulation in Nanoporous Hydrogels
纳米多孔水凝胶中的噪声同步电泳操作
- 批准号:
1160010 - 财政年份:2012
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Young Engineers & Scientists Symposium 2011: A US/France/UK Collaboration in Alterntative Energy Research
年轻工程师
- 批准号:
1101129 - 财政年份:2011
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Rapid Fabrication of Bio-Inspired Microvascular Networks
快速制造仿生微血管网络
- 批准号:
1106005 - 财政年份:2011
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
High Throughput Collection and Detection of Environmental Nanoparticles
环境纳米颗粒的高通量收集和检测
- 批准号:
1034002 - 财政年份:2010
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collection, focusing, and metering of biomolecules using addressable microelectrode arrays for portable low-power bioanalysis
使用可寻址微电极阵列收集、聚焦和计量生物分子,进行便携式低功耗生物分析
- 批准号:
0554108 - 财政年份:2006
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Investigating the molecular mechanisms of membrane remodeling by coronaviruses
研究冠状病毒膜重塑的分子机制
- 批准号:
10724399 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Harnessing Electron-Donor-Acceptor Complexes to Enable Photo-Induced Metal-Free Cross-Coupling Reactions
利用电子供体-受体配合物实现光诱导无金属交叉偶联反应
- 批准号:
10715256 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Targeting neuronal transport to ameliorate vincristine neurotoxicity
靶向神经元运输以改善长春新碱神经毒性
- 批准号:
10736789 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
In-depth molecular studies of dynein transport in the RPE
RPE 中动力蛋白运输的深入分子研究
- 批准号:
10573020 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Specificity of ABCA7-mediated lipid efflux and its effects on intracellular lipid metabolism in neural cells
ABCA7介导的脂质流出的特异性及其对神经细胞细胞内脂质代谢的影响
- 批准号:
10591201 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Cardiovascular Risk of Antiretroviral Therapy Drugs in HIV
HIV 抗逆转录病毒治疗药物的心血管风险
- 批准号:
10700275 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated bypass of mitochondrial electron transport chain with artificial and endogenous substrates
NAD(P)H 醌氧化还原酶 1 (NQO1) 介导的人工和内源底物线粒体电子传递链旁路
- 批准号:
10789749 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
- 批准号:
10716898 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别: