Polyhedral Combinatorics and Algorithms for Stochastic Integer Programming
随机整数规划的多面体组合和算法
基本信息
- 批准号:0942154
- 负责人:
- 金额:$ 12.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-16 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding to study polyhedral combinatorics and algorithms for stochastic integer programming (IP). During the last decade, stochastic IP has received broad attention in the literature as an efficient tool for modeling and solving real-time decision making problems with the consideration of uncertain events. Meanwhile, stochastic IP incorporates both the complexity of integer programming and stochastic linear programming, which makes it challenging to solve large-scale problems. This research focuses on studying fundamental structures of general stochastic IP and developing fast algorithms for the solution of large-scale problems. The research work consists of 1) studying strong valid inequalities and developing efficient branch-and-cut algorithms for stochastic lot-sizing problems, 2) exploring polyhedral combinatorics for general stochastic IP, and 3) identifying properties that would lead to fast polynomial time and approximation algorithms for several special classes of stochastic IP problems. Significant efforts will also be spent developing teaching modules for integer programming and stochastic optimization. Undergraduate and graduate students, emphasizing underrepresented groups, will participate in the project.If successful, the results of this research will lead to scientific methodology innovations for stochastic IP. Polyhedral studies will contribute to the development of improved commercial software for a wide range of stochastic IP problems. The results may also be combined with decomposition algorithms and optimization-based heuristics to improve modeling and computational capabilities on large-scale practical problems. Examples include production planning, manufacturing repair overhaul workforce scheduling, and facility location problems. The research outcomes will finally provide content and methodologies that can be incorporated into graduate level courses and can serve as the bases for development of new courses.
这笔资金用于研究多面体组合学和随机整数规划(IP)算法。在过去的十年里,随机IP作为一种考虑不确定事件的实时决策问题的建模和求解的有效工具,受到了文献的广泛关注。同时,随机IP融合了整数规划和随机线性规划的复杂性,给大规模问题的求解带来了挑战。本研究致力于研究一般随机IP的基本结构,并开发解决大规模问题的快速算法。研究工作包括:1)研究强有效的不等式,提出求解随机批量问题的有效分枝割算法;2)研究一般随机IP问题的多面体组合问题;3)确定几类特殊类型的随机IP问题的多项式时间和逼近算法的性质。还将花费大量精力开发整数规划和随机优化的教学模块。本科生和研究生将参与该项目。如果成功,这项研究结果将导致随机知识产权的科学方法论创新。多面体研究将有助于为广泛的随机IP问题开发改进的商业软件。结果还可以与分解算法和基于优化的启发式算法相结合,以提高对大规模实际问题的建模和计算能力。例如,生产计划、制造维修大修、劳动力调度和设施选址问题。研究成果最终将提供可纳入研究生课程的内容和方法,并可作为开发新课程的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongpei Guan其他文献
Stochastic lot-sizing with backlogging: computational complexity analysis
- DOI:
10.1007/s10898-010-9555-3 - 发表时间:
2011-04 - 期刊:
- 影响因子:1.8
- 作者:
Yongpei Guan - 通讯作者:
Yongpei Guan
A pricing approach for bandwidth allocation in differentiated service networks
- DOI:
10.1016/j.cor.2007.02.003 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:
- 作者:
Yongpei Guan;Weilai Yang;Henry Owen;Douglas M. Blough - 通讯作者:
Douglas M. Blough
A comprehensive methodology combining machine learning and unified robust stochastic programming for medical supply chain viability
一种将机器学习与统一稳健随机规划相结合以保障医疗供应链活力的综合方法
- DOI:
10.1016/j.omega.2024.103264 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.200
- 作者:
Ömer Faruk Yılmaz;Yongpei Guan;Beren Gürsoy Yılmaz;Fatma Betül Yeni;Gökhan Özçelik - 通讯作者:
Gökhan Özçelik
A Polynomial Time Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem with Backlogging
具有积压的随机无容量批量问题的多项式时间算法
- DOI:
10.1007/978-3-540-68891-4_31 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yongpei Guan;Andrew J. Miller - 通讯作者:
Andrew J. Miller
An Edge-Based Formulation for Combined-Cycle Units
联合循环机组基于边缘的公式
- DOI:
10.1109/tpwrs.2015.2443036 - 发表时间:
2016 - 期刊:
- 影响因子:6.6
- 作者:
Lei Fan;Yongpei Guan - 通讯作者:
Yongpei Guan
Yongpei Guan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongpei Guan', 18)}}的其他基金
EAGER: Data-Driven Susceptible-Exposed-Infected-Recovered-Infected (SEIRI) Modeling and Hospital Planning and Operations for COVID-19 Pandemic
EAGER:针对 COVID-19 大流行的数据驱动的易感-暴露-感染-恢复-感染 (SEIRI) 建模以及医院规划和运营
- 批准号:
2027677 - 财政年份:2020
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration
合作研究:数据驱动的可再生能源发电调度风险规避模型和算法
- 批准号:
1609794 - 财政年份:2016
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
Collaborative Research: Travel Support for Students to Attend the Industrial and Systems Engineering Research Conference (ISERC) 2014; Montreal, Canada; 31 May to 3 June 2014
合作研究:为学生参加 2014 年工业与系统工程研究会议 (ISERC) 提供差旅支持;
- 批准号:
1434256 - 财政年份:2014
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
Plug-in Hybrid Electric Vehicles and Electricity Markets
插电式混合动力汽车和电力市场
- 批准号:
1436749 - 财政年份:2014
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
Chance-Constrained and Robust Optimization for Power Systems with Intermittent Renewable Generation
间歇性可再生能源发电电力系统的机会约束和鲁棒优化
- 批准号:
1202264 - 财政年份:2012
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
CAREER: A Study of Stochastic and Robust Integer Programming: Algorithms, Computations and Applications
职业:随机和鲁棒整数规划研究:算法、计算和应用
- 批准号:
0942156 - 财政年份:2009
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
CAREER: A Study of Stochastic and Robust Integer Programming: Algorithms, Computations and Applications
职业:随机和鲁棒整数规划研究:算法、计算和应用
- 批准号:
0748204 - 财政年份:2008
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
Polyhedral Combinatorics and Algorithms for Stochastic Integer Programming
随机整数规划的多面体组合和算法
- 批准号:
0700868 - 财政年份:2007
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
相似海外基金
Travel: NSF Student Travel Grant for 2023 PROTRAC:Probabilistic Trajectories in Algorithms and Combinatorics
旅行:2023 年 NSF 学生旅行补助金 PROTRAC:算法和组合学中的概率轨迹
- 批准号:
2340325 - 财政年份:2023
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/2 - 财政年份:2023
- 资助金额:
$ 12.45万 - 项目类别:
Fellowship
CAREER: Developing a unified theory of descriptive combinatorics and local algorithms
职业:发展描述性组合学和局部算法的统一理论
- 批准号:
2239187 - 财政年份:2023
- 资助金额:
$ 12.45万 - 项目类别:
Continuing Grant
Designing Faster Algorithms by Connecting Structural Combinatorics and Convex Optimization
通过连接结构组合学和凸优化来设计更快的算法
- 批准号:
557770-2021 - 财政年份:2022
- 资助金额:
$ 12.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/1 - 财政年份:2022
- 资助金额:
$ 12.45万 - 项目类别:
Fellowship
REU Site: CAAR: Combinatorics, Algorithms, and AI Applied to Real Problems
REU 网站:CAAR:组合学、算法和人工智能应用于实际问题
- 批准号:
2150382 - 财政年份:2022
- 资助金额:
$ 12.45万 - 项目类别:
Standard Grant
Designing Faster Algorithms by Connecting Structural Combinatorics and Convex Optimization
通过连接结构组合学和凸优化来设计更快的算法
- 批准号:
557770-2021 - 财政年份:2021
- 资助金额:
$ 12.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient algorithms for optimization problems and their interplay with polyhedral combinatorics
优化问题的有效算法及其与多面体组合的相互作用
- 批准号:
RGPAS-2019-00073 - 财政年份:2020
- 资助金额:
$ 12.45万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient algorithms for optimization problems and their interplay with polyhedral combinatorics
优化问题的有效算法及其与多面体组合的相互作用
- 批准号:
RGPIN-2019-04413 - 财政年份:2020
- 资助金额:
$ 12.45万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for optimization problems and their interplay with polyhedral combinatorics
优化问题的有效算法及其与多面体组合的相互作用
- 批准号:
RGPAS-2019-00073 - 财政年份:2019
- 资助金额:
$ 12.45万 - 项目类别:
Discovery Grants Program - Accelerator Supplements