CAREER: Using Machine Learning to Understand and Enhance Human Learning Capacity
职业:利用机器学习来理解和增强人类的学习能力
基本信息
- 批准号:0953219
- 负责人:
- 金额:$ 46.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding and enhancing human learning are important challenges in the 21st century. Existing human category learning models cannot quantify important capacities such as people's (in)ability to generalize from training to test, to learn from imperfect data, or to learn by actively asking questions. This research project studies human learning using machine learning. It first develops machine learning theory and algorithms to quantify these human learning capacities: It establishes learning-theoretic error bounds on human generalization performance; It models human learning from an imperfect teacher with non-parametric Bayesian methods; It models human's ability to ask informative questions with active learning theory. The project then studies computational approaches to enhance human learning: It develops "machine teaching" algorithms when the computer knows the target concept, and selects the optimal training examples to teach a human learner; It develops "human machine co-learning" algorithms when the computer does not know the target concept, but instead learns alongside the human and suggests better learning strategies to her. Each topic is verified by human experiments.The project advances machine learning with new learning theory and algorithms on tasks where humans excel. It advances cognitive psychology with new models of human learning. It has broader impacts in understanding human intelligence, and in benefiting students with new educational tools. This research project is integrated with an educational plan that incorporates undergraduate and graduate teaching and mentoring, developing a new course and a book on machine and human learning, organizing seminars, tutorials and workshops, and sharing all results on a website.
理解和促进人类学习是21世纪世纪的重要挑战。 现有的人类类别学习模型无法量化重要的能力,例如人们从训练到测试的概括能力,从不完美的数据中学习的能力,或者通过主动提问来学习的能力。 该研究项目使用机器学习来研究人类学习。 它首先开发了机器学习理论和算法来量化这些人类学习能力:它建立了人类泛化性能的学习理论误差范围;它用非参数贝叶斯方法对人类从不完美的教师学习进行建模;它用主动学习理论对人类提出信息性问题的能力进行建模。 然后,该项目研究了增强人类学习的计算方法:当计算机知道目标概念时,它开发了“机器教学”算法,并选择最佳训练示例来教授人类学习者;当计算机不知道目标概念时,它开发了“人机协同学习”算法,而是与人类一起学习,并向她提出更好的学习策略。每个主题都经过人体实验验证。该项目通过新的学习理论和算法推进机器学习,人类出类拔萃 它用人类学习的新模型推进了认知心理学。 它在理解人类智力方面具有更广泛的影响,并使学生受益于新的教育工具。 该研究项目与一个教育计划相结合,该计划包括本科和研究生教学和指导,开发一门新课程和一本关于机器和人类学习的书,组织研讨会,教程和研讨会,并在网站上分享所有结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojin Zhu其他文献
Research on peripheral nerve conduction block by high frequency alternating current stimulation
高频交流电刺激周围神经传导阻滞的研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiaojin Zhu;Xu Zhang;Hui Wang;Chunchan Li;Lili Yan;Qingkai Liu;Z. Ren - 通讯作者:
Z. Ren
Error Lower Bounds of Constant Step-size Stochastic Gradient Descent
恒定步长随机梯度下降的误差下界
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhiyan Ding;Yiding Chen;Qin Li;Xiaojin Zhu - 通讯作者:
Xiaojin Zhu
Correlation Clustering for Crosslingual Link Detection
用于跨语言链接检测的相关聚类
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jurgen Van Gael;Xiaojin Zhu - 通讯作者:
Xiaojin Zhu
Non-visualVibration Shape Reconstruction for Smart Plate Structure With Bonded FBGSensors
结合光纤光栅传感器的智能板结构的非视觉振动形状重建
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1
- 作者:
Xiaojin Zhu;Zhiyuan GAO;Geng Lu;Jiang Fan - 通讯作者:
Jiang Fan
Hierarchical Topic Models for Image Categorization
用于图像分类的分层主题模型
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ye Chen;Xiaojin Zhu - 通讯作者:
Xiaojin Zhu
Xiaojin Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojin Zhu', 18)}}的其他基金
SHF: Small: Transforming Natural Language to Programming Languages
SHF:小:将自然语言转换为编程语言
- 批准号:
1423237 - 财政年份:2014
- 资助金额:
$ 46.56万 - 项目类别:
Standard Grant
III: Small: Advancing the Scientific Understanding of Bullying Through the Lens of Social Media
III:小:通过社交媒体的视角促进对欺凌行为的科学理解
- 批准号:
1216758 - 财政年份:2012
- 资助金额:
$ 46.56万 - 项目类别:
Standard Grant
RI: Small: Semi-Supervised Learning for Non-Experts
RI:小型:非专家的半监督学习
- 批准号:
0916038 - 财政年份:2009
- 资助金额:
$ 46.56万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Standard Grant
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
- 批准号:
LP230100351 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Linkage Projects
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Collaborative R&D
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Standard Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
$ 46.56万 - 项目类别:
Standard Grant














{{item.name}}会员




