CAREER:Deciphering the Neural Code From Perception To Cognition
职业:破译从感知到认知的神经密码
基本信息
- 批准号:0954570
- 负责人:
- 金额:$ 50.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human beings can recognize objects in a highly selective, robust and fast manner. One of the remarkable properties of our recognition machinery is the possibility to selectively recognize objects even after transformations such as rotation, translation, scaling, occlusion and clutter. How the human brain accomplishes recognition is not well understood. More is known about processing of sensory information from receptors to the initial stages in cortex than about the subsequent transformation of perceptual data into cognition. In parallel, over the last decades, major progress has been made in building ever more accurate and sophisticated computers and devices to capture sensory information but progress has been slower in terms of developing algorithms and hardware to automatically interpret the sensory data. With support from the National Science Foundation, Dr. Gabriel Krieman is undertaking research whose aim is to elucidate the computational steps and algorithms implemented by the cerebral cortex to transform incoming inputs into cognitive functions and behavior. The research focuses on one particular aspect of cognitive experience, the neuronal mechanisms and circuits that underlie visual processing. While vision is only one of many aspects of cognition, lessons learnt from studying visual cortex can also eventually help describe other aspects of cortical function and can pave the way for research on other challenging aspects of cognition. To investigate visual cognition, Dr. Kreiman takes advantage of a rare opportunity to both stimulate and record electrical activity at high spatial and temporal resolution directly from the human brain in epilepsy patients. The study investigates tasks where visual cognition is dissociated from the incoming sensory processing in order to isolate the cognitive operations involved in recognition. The discoveries about the function of biological neural circuits will be applied to develop biophysically-inspired robust machine vision algorithms. Visual recognition is essential for most everyday tasks including navigating, reading, and identifying objects, faces and emotions. By furthering our understanding of the transformation of perceptual information into cognition, the study is contributing to two broad goals: (1) Helping to alleviate the challenging conditions that involve cognitive disorders through the development of brain-machine interfaces; and (2) Applying knowledge about neuronal circuits to develop computational algorithms to extract cognitive information from sensory data. Building a fast, robust and reliable artificial vision system would have profound repercussions in many areas of science and engineering including pattern recognition, surveillance and security, automatic navigation, clinical image analysis and others. These scientific and engineering advances could in turn translate into important real-world applications of interest for industrial partnerships. Dr. Kreiman pursues these goals by studying the best possible system that can solve visual recognition challenges, the human brain. Understanding the visual system relies on many skills ranging from computer science to engineering to physics to neuroscience to psychology. The project serves well to train a generation of multidisciplinary students who can build on the fundamental science knowledge and apply this knowledge to challenging biological problems.
人类可以以高度选择性、鲁棒性和快速的方式识别物体。我们的识别机制的一个显着特性是,即使经过旋转、平移、缩放、遮挡和混乱等变换,也有可能选择性地识别物体。人类大脑是如何完成识别的还没有很好的理解。我们对感觉信息从感受器到皮层初始阶段的处理过程了解得更多,而对感知数据到认知的后续转化过程了解得较少。与此同时,在过去的几十年里,在构建更准确和复杂的计算机和设备以捕获感官信息方面取得了重大进展,但在开发自动解释感官数据的算法和硬件方面进展缓慢。在美国国家科学基金会的支持下,加布里埃尔·克里曼博士正在进行一项研究,其目的是阐明大脑皮质将输入转化为认知功能和行为所实施的计算步骤和算法。该研究集中在认知经验的一个特定方面,即视觉处理的神经机制和电路。虽然视觉只是认知的许多方面之一,但从研究视觉皮层中获得的经验教训最终也可以帮助描述皮层功能的其他方面,并为认知的其他挑战性方面的研究铺平道路。为了研究视觉认知,Kreiman博士利用一个难得的机会,直接从癫痫患者的人脑中以高空间和时间分辨率刺激和记录电活动。该研究调查的任务,视觉认知是从传入的感觉处理分离,以隔离的认知操作参与识别。关于生物神经回路功能的发现将被应用于开发生物制药启发的鲁棒机器视觉算法。视觉识别对于大多数日常任务都是必不可少的,包括导航,阅读以及识别物体,面部和情绪。通过进一步了解感知信息转化为认知,该研究有助于实现两个广泛的目标:(1)通过开发脑机接口帮助缓解涉及认知障碍的挑战性条件;(2)应用有关神经元回路的知识开发计算算法,从感官数据中提取认知信息。建立一个快速,强大和可靠的人工视觉系统将在许多科学和工程领域产生深远的影响,包括模式识别,监控和安全,自动导航,临床图像分析等。这些科学和工程方面的进步可以转化为工业伙伴关系感兴趣的重要现实应用。Kreiman博士通过研究能够解决视觉识别挑战的最佳系统来实现这些目标,即人类大脑。理解视觉系统依赖于许多技能,从计算机科学到工程学,从物理学到神经科学再到心理学。该项目很好地培养了一代多学科的学生,他们可以建立在基础科学知识的基础上,并将这些知识应用于具有挑战性的生物学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Krieman其他文献
Gabriel Krieman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Krieman', 18)}}的其他基金
Collaborative Research: NCS-FO: Studying language in the brain in the modern machine learning era
合作研究:NCS-FO:研究现代机器学习时代大脑中的语言
- 批准号:
2123818 - 财政年份:2021
- 资助金额:
$ 50.34万 - 项目类别:
Standard Grant
EAGER: Top-down processes to extract meaning from images
EAGER:从图像中提取含义的自上而下的过程
- 批准号:
1745365 - 财政年份:2017
- 资助金额:
$ 50.34万 - 项目类别:
Standard Grant
Neurophysiological circuits underlying episodic memory formation in the human brain
人脑情景记忆形成的神经生理回路
- 批准号:
1358839 - 财政年份:2014
- 资助金额:
$ 50.34万 - 项目类别:
Continuing Grant
US-German Collaboration: Integration of Bottom-Up and Top-Down Signals in Visual Recognition
美德合作:视觉识别中自下而上和自上而下信号的集成
- 批准号:
1010109 - 财政年份:2010
- 资助金额:
$ 50.34万 - 项目类别:
Standard Grant
相似海外基金
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 50.34万 - 项目类别:
Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
- 批准号:
10676016 - 财政年份:2023
- 资助金额:
$ 50.34万 - 项目类别:
Deciphering neural origins of interhemispheric striatal resting-state functional connectivity using simultaneous chemogenetic fMRI and triple-spectral fiber photometry
使用同步化学遗传学功能磁共振成像和三光谱光纤光度测定破译半球间纹状体静息态功能连接的神经起源
- 批准号:
10727994 - 财政年份:2023
- 资助金额:
$ 50.34万 - 项目类别:
Deciphering the neural mechanisms of music processing in the developing brain: A multi-feature and multi-cultural comparison
解读发育中大脑中音乐处理的神经机制:多特征和多文化比较
- 批准号:
10798728 - 财政年份:2022
- 资助金额:
$ 50.34万 - 项目类别:
Deciphering the Neural Mechanisms of Restrictive Eating in Anorexia Nervosa Using Repetitive Transcranial Magnetic Stimulation
使用重复经颅磁刺激破译神经性厌食症限制饮食的神经机制
- 批准号:
10704120 - 财政年份:2022
- 资助金额:
$ 50.34万 - 项目类别:
Deciphering the Neural Mechanisms of Restrictive Eating in Anorexia Nervosa Using Repetitive Transcranial Magnetic Stimulation
使用重复经颅磁刺激破译神经性厌食症限制饮食的神经机制
- 批准号:
10525743 - 财政年份:2022
- 资助金额:
$ 50.34万 - 项目类别:
Deciphering the neural gene regulatory network system and relationship with neuronal diseases
破译神经基因调控网络系统及其与神经元疾病的关系
- 批准号:
22H02797 - 财政年份:2022
- 资助金额:
$ 50.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deciphering decision making: exploring the interactions between neural and neurochemical systems underlying the evaluation versus employment of cognitive effort in rats
解读决策:探索大鼠认知努力评估与运用背后的神经和神经化学系统之间的相互作用
- 批准号:
RGPIN-2017-05006 - 财政年份:2021
- 资助金额:
$ 50.34万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Deciphering the neural network orchestrating sex differences in metabolic circadian rhythms
职业:破译协调代谢昼夜节律性别差异的神经网络
- 批准号:
2045267 - 财政年份:2021
- 资助金额:
$ 50.34万 - 项目类别:
Continuing Grant
Deciphering the dynamic neural basis of cognition and dementia
破译认知和痴呆的动态神经基础
- 批准号:
nhmrc : 1193857 - 财政年份:2021
- 资助金额:
$ 50.34万 - 项目类别:
Investigator Grants