CAREER: Optimization and continuation methods in fluid mechanics

职业:流体力学的优化和延续方法

基本信息

  • 批准号:
    0955078
  • 负责人:
  • 金额:
    $ 40.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Shape optimization in fluid mechanics is the study of how to design a body, such as a wing or propeller, to maximize lift or thrust while minimizing drag. Tools developed for shape optimization can also be used to dramatically improve the performance of shooting methods for two-point boundary value problems governed by nonlinear partial differential equations. This project concerns the development and implementation of new algorithms for shape optimization of Newtonian and viscoelastic fluids in nearly singular geometries, and for the computation of time-periodic solutions in fluid mechanics. New adjoint-based optimal control methods will be developed to compute gradients of objective functions and constraints governed by partial differential equations featuring singular integrals, non-local operators, or hysteresis. The solutions of these optimization and boundary value problems occur in multi-parameter families that will be studied using numerical continuation algorithms capable of identifying bifurcations and following folds in the manifold of solutions.Shape optimization is fundamental in the design of a wide range of engineering systems such as fuel-efficient vehicles and aircraft or micro-fluidic "lab on a chip" devices used in chemistry and molecular biology. One of the goals of this research is to develop shape optimization techniques for materials that behave partly as viscous fluids and partly as elastic solids. Applications include designing inkjet printers, recycling and manufacturing plastics, and understanding bio-locomotion in invertebrates. Another goal of this research is to develop numerical methods for computing solutions of the equations of fluid mechanics that evolve to an exact copy of their initial state at a later time and then repeat themselves forever. These solutions are helpful in understanding complex phenomena such as ocean waves or the onset of turbulence in a pipe. They should also prove useful in dynamic shape optimization problems, where the goal might be to optimize the average speed over one cycle of a swimming stroke. Broader impacts of this project include course and curriculum development, organization of seminars and minisymposia, community outreach, advising of students and postdocs, and hosting of DOE Computational Science Graduate Fellows who wish to do a summer practicum at Lawrence Berkeley National Laboratory.
流体力学中的形状优化是研究如何设计一个物体,如机翼或螺旋桨,以最大限度地提高升力或推力,同时最小化阻力。 为形状优化开发的工具还可用于显着提高由非线性偏微分方程控制的两点边值问题的射击方法的性能。 该项目涉及的发展和实施的新算法的形状优化牛顿和粘弹性流体在近奇异的几何形状,并在流体力学的时间周期的解决方案的计算。 新的基于伴随的最优控制方法将被开发来计算目标函数的梯度和由具有奇异积分、非局部算子或滞后的偏微分方程所支配的约束。 这些优化和边界值问题的解决方案发生在多参数的家庭,将使用能够识别分叉和以下折叠的解决方案的流形的数值延拓算法进行研究。形状优化是在设计的基础上,广泛的工程系统,如燃油效率的车辆和飞机或微流体“芯片实验室”的化学和分子生物学设备。 这项研究的目标之一是开发形状优化技术的材料,部分作为粘性流体和部分作为弹性固体。 应用包括设计喷墨打印机,回收和制造塑料,以及了解无脊椎动物的生物运动。 这项研究的另一个目标是开发计算流体力学方程的数值方法,这些方程在稍后的时间演化到其初始状态的精确副本,然后永远重复。这些解决方案有助于理解复杂的现象,如海浪或管道中湍流的发生。 它们在动态形状优化问题中也应该被证明是有用的,其中目标可能是优化游泳划水的一个周期的平均速度。 该项目的更广泛的影响包括课程和课程开发,研讨会和minisymopsia的组织,社区推广,学生和博士后的建议,并希望在劳伦斯伯克利国家实验室做暑期实习的DOE计算科学研究生研究员的托管。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Wilkening其他文献

The semi-analytic theory and computation of finite-depth standing water waves
有限深度驻水波的半解析理论与计算
  • DOI:
    10.48550/arxiv.2401.00844
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmad Abassi;Jon Wilkening
  • 通讯作者:
    Jon Wilkening

Jon Wilkening的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Wilkening', 18)}}的其他基金

Quasi-periodic Water Waves and Their Stability
准周期水波及其稳定性
  • 批准号:
    1716560
  • 财政年份:
    2017
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了