III: Medium: Collaborative Research: Geometric Network Analysis Tools: Algorithmic Methods for Identifying Structure in Large Informatics Graphs

III:媒介:协作研究:几何网络分析工具:识别大型信息学图中结构的算法方法

基本信息

  • 批准号:
    0963904
  • 负责人:
  • 金额:
    $ 41.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

There has been an enormous amount of work in recent years directedtoward understanding the structural and dynamical properties of"informatics graphs" or "complex networks." Most of this work has beenon small to medium-sized networks, and it has led to an improvedunderstanding of the properties of networks arising in many graphmining applications. In spite of this, formulating appropriate modelsfor and answering even basic questions about larger informaticsgraphs remains challenging. For instance, recent work has shown thatdynamic properties as well as basic structural properties of largeinformatics graphs are not reproduced even qualitatively by popularnetwork generative models.The proposed work will use traditional and recently-developedapproximation algorithms for the graph partitioning problem as"experimental probes" of large informatics graphs in order tocharacterize in a more robust and scalable manner the structural anddynamic properties of very large informatics graphs. This willinclude extending and implementing recently-developed algorithms suchas "local" spectral methods and algorithms that intuitively"interpolate" between spectral and flow-based methods, as well asrevisiting in light of new applications traditional methods such asthe global spectral method and ideas underlying the popular packageMetis. A central goal will be to provide the analyst with tools thathave sufficient algorithmic and statistical flexibility tocharacterize the local and global structures of large networks in arich and robust way.The Intellectual Merit of the proposed work lies in extending recenttheoretical and algorithmic developments and applying them to veryreal-world problems. The Broader Impact of the project lies inenhancing interdisciplinary education at Berkeley and Stanford andmore generally. This will involve the organization of meetings andcourses that will include the opportunity for research projects,including by students from underrepresented groups, that focus onbridging theoretical methods and real-world applications. Forfurther information see the project web page:URL: http://cs.stanford.edu/people/mmahoney/graphmining/
近年来,有大量的工作是为了理解“信息学图”或“复杂网络”的结构和动态特性。大部分工作都是在中小型网络上进行的,并且它已经导致了对许多石墨挖掘应用中出现的网络特性的更好理解。尽管如此,为更大的信息图表制定合适的模型并回答基本问题仍然具有挑战性。例如,最近的研究表明,流行的网络生成模型甚至不能定性地再现大型信息学图的动态特性和基本结构特性。提出的工作将使用传统的和最近开发的图划分问题的近似算法作为大型信息学图的“实验探针”,以便以更健壮和可扩展的方式表征超大型信息学图的结构和动态特性。这将包括扩展和实现最近开发的算法,如“局部”光谱方法和在光谱和基于流的方法之间直观地“插值”的算法,以及根据新的应用重新审视传统方法,如全局光谱方法和流行的软件包背后的思想。中心目标将是为分析人员提供具有足够算法和统计灵活性的工具,以丰富和稳健的方式表征大型网络的局部和全局结构。所提出的工作的智力价值在于扩展了最近的理论和算法发展,并将它们应用于非常现实的问题。该项目更广泛的影响在于加强伯克利和斯坦福乃至更广泛的跨学科教育。这将涉及组织会议和课程,其中包括研究项目的机会,包括来自代表性不足群体的学生,这些项目侧重于连接理论方法和现实世界的应用。欲了解更多信息,请参阅项目网页:URL: http://cs.stanford.edu/people/mmahoney/graphmining/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satish Rao其他文献

Molecular characterization and clinical significance of extraintestinal pathogenic Escherichia coli recovered from a south Indian tertiary care hospital.
从印度南部三级护理医院回收的肠外致病性大肠杆菌的分子特征和临床意义。
  • DOI:
    10.1016/j.micpath.2016.03.001
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Arindam Chakraborty;P. Adhikari;S. Shenoy;Satish Rao;B. Dhanashree;V. Saralaya
  • 通讯作者:
    V. Saralaya
The k-traveling repairman problem
k-旅行修理工问题
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jittat Fakcharoenphol;Chris Harrelson;Satish Rao
  • 通讯作者:
    Satish Rao
Congestion-Approximators from the Bottom Up
自下而上的拥塞近似器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Li;Satish Rao;Di Wang
  • 通讯作者:
    Di Wang
Geometric Embeddings and Graph Partitioning
几何嵌入和图分区
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanjeev Arora;Satish Rao
  • 通讯作者:
    Satish Rao
Investigation of the pathophysiology of diverticular disease
  • DOI:
    10.1016/s0016-5085(00)85475-x
  • 发表时间:
    2000-04-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kodl Christopher;Pooyan Sadeghi;Satish Rao
  • 通讯作者:
    Satish Rao

Satish Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satish Rao', 18)}}的其他基金

AF: Small: Algorithms March on through Continuous and Combinatorial Methods
AF:小:算法通过连续和组合方法前进
  • 批准号:
    1816861
  • 财政年份:
    2018
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
  • 批准号:
    1535989
  • 财政年份:
    2015
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms: approximate, combinatorial, and continuous.
AF:小:算法:近似、组合和连续。
  • 批准号:
    1528174
  • 财政年份:
    2015
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms: Linear, Spectral, and Approximation.
AF:小:算法:线性、谱和近似。
  • 批准号:
    1118083
  • 财政年份:
    2011
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Explorations in Algorithms
算法探索
  • 批准号:
    0830797
  • 财政年份:
    2008
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spectral Graph Theory and Its Applications
合作研究:谱图理论及其应用
  • 批准号:
    0635357
  • 财政年份:
    2007
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant
Metric embeddings, approximation and combinatorial algorithms.
度量嵌入、近似和组合算法。
  • 批准号:
    0515304
  • 财政年份:
    2005
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
  • 批准号:
    0331494
  • 财政年份:
    2003
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Cooperative Agreement
Network Algorithms: Scheduling and Routing
网络算法:调度和路由
  • 批准号:
    0105533
  • 财政年份:
    2001
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 41.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了