Novel Strategies in Cartilage Tissue Engineering: Enhancing Cartilage Stability Using Muscle-Derived Factors and Scaffold Selection

软骨组织工程的新策略:利用肌肉衍生因子和支架选择增强软骨稳定性

基本信息

  • 批准号:
    0966920
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

0966920ZengCartilage is a tissue that has a poor capacity for self-repair. Current tissue engineering strategies aim to replace damaged tissue by seeding cartilage cells or chondrocytes into three-dimensional scaffolds. Within the scaffolds, these chondrocytes proliferate and secrete extracellular matrix, leading to the formation of regenerated cartilage. This regenerated cartilage will then be transplanted into the host, with the goal of assuming the function of native cartilage. The biomechanical strength of engineered cartilage is directly correlated to the amount of extracellular matrix produced by cartilage cells. Yet, even regenerated cartilage with good mechanical properties may be damaged by pro-inflammatory cytokines present in the host site, compromising the stability of the regenerated cartilage. Thus, there is a critical need for engineered cartilage to be resistant to pro-inflammatory cytokine-induced degradation.Intellectual merit.This interdisciplinary research combines the expertise of developmental biology (Dr. Zeng) with tissue engineering (Dr. Kaplan). It aims at solving key issues in the technology of cartilage tissue engineering by testing the central hypothesis that muscle cells and scaffolding selection can enhance the stability of regenerated cartilage in terms of cartilage matrix production and inflammatory cytokine resistance. A comprehensive battery of biochemical and biomechanical analyses are planned to test this hypothesis. Very little is known regarding the mechanism by which muscle cells regulate cartilage gene expression, and the role of muscle cells or scaffolding materials on cytokine response has never been reported. Thus in addition to advancing cartilage tissue engineering technology, completing this research will also lead to a deeper and more complete understanding of the biology of cartilage regulation.The strategy described in this proposal was inspired by concepts from animal development, when tissues develop alongside each other (such as cartilage and muscle) play crucial roles in cell-cell signaling between adjacent tissues and their subsequent differentiation and proliferation. Thus, cartilage formation involves not just cartilage cells, but cells of multiple surrounding tissues. Thus our idea of mimicking embryo development may inspire the creation of novel strategies to engineer other tissue types as well.Broader impacts.This proposed research seeks to advance education and learning in addition to the knowledge of science. Two new modules are designed to build into two courses (i.e. Biomaterial and tissue engineering and Developmental Biology), which will focus on enhancing cartilage tissue engineering using the concepts and approaches in developmental biology, and using tissue engineering approaches to recapitulate and investigate developmental processes. The courses will be divided into classroom lectures, student presentations and literature reading. Both Dr. Zeng and Dr. Kaplan belong to a variety of educational programs, such as TAHSS (Teachers and High School Students) and BDBS (Building Diversity in Biomedical Sciences). These programs recruit minority or economically disadvantaged students who otherwise may not have the opportunity to be exposed to research. The education aspect of researchplan has been carefully developed to enable students of different levels to perform interdisciplinary research in both laboratories.The proposed research activity will also enhance the infrastructure of the scientific community. First, this work will directly benefit the local community of Tufts University. In particular, it will contribute to the infrastructure of the Tufts Bioengineering and Biotechnology Center. Through its education and training programs, the center connects members within the academia community (students, postdocs and faculty) and between academia and industry. Moreover, the results obtained from this research will be sharedwith other scientists through publications, and in conferences and research seminars throughout the nation. Thus, the activities resulting from this research will have a positive impact on the broad scientific community as well.
0966920增肌纤维是一种自我修复能力差的组织。目前的组织工程策略旨在通过将软骨细胞或软骨细胞接种到三维支架中来替代受损组织。 在支架内,这些软骨细胞增殖并分泌细胞外基质,导致再生软骨的形成。然后将再生的软骨移植到宿主体内,目的是承担天然软骨的功能。工程化软骨的生物力学强度与软骨细胞产生的细胞外基质的量直接相关。然而,即使是具有良好机械性能的再生软骨也可能被宿主部位中存在的促炎细胞因子损伤,从而损害再生软骨的稳定性。因此,迫切需要工程化软骨能够抵抗促炎激素诱导的降解。智力价值。这项跨学科研究结合了发育生物学(曾博士)和组织工程(卡普兰博士)的专业知识。它旨在解决软骨组织工程技术中的关键问题,通过测试的中心假设,即肌肉细胞和支架选择可以增强再生软骨的稳定性,在软骨基质的生产和炎症细胞因子的抵抗。计划进行一系列全面的生物化学和生物力学分析来检验这一假设。关于肌细胞调节软骨基因表达的机制知之甚少,肌细胞或支架材料对细胞因子反应的作用从未报道过。因此,除了推进软骨组织工程技术,完成这项研究还将导致更深入和更完整的了解软骨调节的生物学。本提案中描述的策略受到动物发育概念的启发,当组织彼此并行发育时软骨和肌肉等组织在相邻组织之间的细胞-细胞信号传导及其随后的分化和增殖中起着至关重要的作用。因此,软骨形成不仅涉及软骨细胞,而且涉及多种周围组织的细胞。因此,我们模仿胚胎发育的想法可能会激发创造新的策略来设计其他组织类型。更广泛的影响。这项拟议的研究旨在促进教育和学习,以及科学知识。两个新的模块被设计成两个课程(即生物材料和组织工程和发育生物学),这将侧重于使用发育生物学的概念和方法来增强软骨组织工程,并使用组织工程方法来概括和研究发育过程。课程将分为课堂讲座、学生报告和文学阅读。曾博士和卡普兰博士都参加了各种教育项目,如TAHSS(教师和高中生)和BDBS(生物医学科学的多样性建设)。这些计划招收少数民族或经济上处于不利地位的学生,否则他们可能没有机会接触研究。研究计划的教育部分经过精心设计,使不同水平的学生能够在两个实验室进行跨学科研究。拟议的研究活动还将加强科学界的基础设施。首先,这项工作将直接有利于塔夫茨大学的当地社区。特别是,它将有助于塔夫茨生物工程和生物技术中心的基础设施。通过其教育和培训计划,该中心将学术界(学生,博士后和教师)以及学术界和工业界之间的成员联系起来。此外,从这项研究中获得的结果将通过出版物,并在全国各地的会议和研究研讨会上与其他科学家分享。因此,这项研究所产生的活动也将对广大科学界产生积极影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Zeng其他文献

Simultaneous vector bending and temperature sensing based on eccentric multi-mode fiber Bragg gratings
基于偏心多模光纤布拉格光栅的同时矢量弯曲和温度传感
  • DOI:
    10.1016/j.sna.2021.112903
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyan Sun;Zikun Chang;Li Zeng;Limu Zhang;Youwang Hu;Ji’an Duan
  • 通讯作者:
    Ji’an Duan
A UAV-Swarm Control Platform Architecture Based on Cloud
基于云的无人机集群控制平台架构
  • DOI:
    10.1007/978-981-15-8411-4_207
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Zeng;Zesheng Zhu;Xunzhi Shi;Yulei Liu
  • 通讯作者:
    Yulei Liu
FGFR1 Induces Acquired Resistance Against Gefitinib By Activating AKT/mTOR Pathway In NSCLC
FGFR1 通过激活 NSCLC 中的 AKT/mTOR 通路诱导对吉非替尼的获得性耐药
  • DOI:
    10.2147/ott.s220462
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Zhang Dan;Han Li-li;Du Fen;Liu Xiao-meng;Li Jin;Wang Hui-hui;Song Ming-hui;Li Zeng;Li Guo-yin
  • 通讯作者:
    Li Guo-yin
Efficient carbon-based planar CsPbBr3 perovskite solar cells with Li-doped amorphous Nb2O5 layer
具有锂掺杂非晶 Nb2O5 层的高效碳基平面 CsPbBr3 钙钛矿太阳能电池
  • DOI:
    10.1016/j.jallcom.2020.155984
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Zhao Fei;Guo Yixin;Wang Xiang;Tao Jiahua;Li Zeng;Zheng Dongliang;Jiang Jinchun;Hu Zhigao;Chu Junhao
  • 通讯作者:
    Chu Junhao
Comparison of three instruments for activity disability in acute ischemic stroke survivors
三种仪器对急性缺血性脑卒中幸存者活动障碍的比较
  • DOI:
    10.1017/cjn.2020.149
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qian Wu;Aijie Tang;Shuzhen Niu;Aiping Jin;Xiaoqing Liu;Li Zeng;Jinxia Jiang;Jennifer Kue;Yan Shi;Xiaoping Zhu
  • 通讯作者:
    Xiaoping Zhu

Li Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Zeng', 18)}}的其他基金

Decision-making and Development of A 3D Printing-based Meniscus Transplantation System
基于3D打印的半月板移植系统的决策和开发
  • 批准号:
    1634858
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Quality Profile Modeling and Control with Applications in Tissue-engineered Scaffolds Fabrication
合作研究:质量剖面建模和控制及其在组织工程支架制造中的应用
  • 批准号:
    1649009
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Quality Profile Modeling and Control with Applications in Tissue-engineered Scaffolds Fabrication
合作研究:质量剖面建模和控制及其在组织工程支架制造中的应用
  • 批准号:
    1266225
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

BCCMA: Cartilage Repair Strategies to Alleviate Arthritis Pain (Care AP): Targeting Pattern-Recognition to Reduce Pain-Related Pathology in Osteoarthritis
BCCMA:缓解关节炎疼痛的软骨修复策略(Care AP):以模式识别为目标,减少骨关节炎中与疼痛相关的病理
  • 批准号:
    10620628
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
BCCMA: Cartilage Repair Strategies to Alleviate Arthritis Pain (Care AP): Targeting Pattern-Recognition to Reduce Pain-Related Pathology in Osteoarthritis
BCCMA:缓解关节炎疼痛的软骨修复策略(Care AP):以模式识别为目标,减少骨关节炎中与疼痛相关的病理
  • 批准号:
    10365346
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
  • 批准号:
    10514601
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
  • 批准号:
    10292959
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Optimizing the Host Environment for Intra-articular Osteoarthritis Therapies
CMA:缓解关节炎疼痛的软骨修复策略 (CaRe AP):优化关节内骨关节炎治疗的宿主环境
  • 批准号:
    10376737
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Optimizing the Host Environment for Intra-articular Osteoarthritis Therapies
CMA:缓解关节炎疼痛的软骨修复策略 (CaRe AP):优化关节内骨关节炎治疗的宿主环境
  • 批准号:
    9890590
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Development of novel therapeutic strategies for cartilage defects based on molecular mechanisms of hyaline cartilage regeneration promoted by chondrocyte sheets.
基于软骨细胞片促进透明软骨再生的分子机制,开发软骨缺陷的新治疗策略。
  • 批准号:
    20K07297
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
  • 批准号:
    10013786
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Optimizing the Host Environment for Intra-articular Osteoarthritis Therapies
CMA:缓解关节炎疼痛的软骨修复策略 (CaRe AP):优化关节内骨关节炎治疗的宿主环境
  • 批准号:
    10618788
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Bioinks development in order to explore different biomimetic strategies for cartilage regenerative medicine
开发生物墨水以探索软骨再生医学的不同仿生策略
  • 批准号:
    2132165
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了