Collaborative Research: Design of Templated Ceramic Materials for Separation and Purification of Complex Carbohydrates

合作研究:用于复杂碳水化合物分离和纯化的模板陶瓷材料的设计

基本信息

  • 批准号:
    0967390
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-15 至 2013-04-30
  • 项目状态:
    已结题

项目摘要

Complex carbohydrates play many integral roles in biological systems. Biologically active polysaccharides (glycans) interact with proteins on the outside of cells, and are involved in controlling communication, adhesion, and transport of material between cells. The need to isolate and purify specific carbohydrates for use as drugs has emerged from the realization that carbohydrates are central to many cell functions and disease states, ranging from cold sores to cancer. However, the technology to synthesize and purify specific carbohydrates is falling behind the ability of glycobiologists to identify the structure and function of carbohydrates. This project will develop microphase-directed molecular imprinting (MDMI) of sol-gel ceramic materials to design selective, stable materials for the separation and purification of complex carbohydrates based on recognition of the glycan building blocks of glucose, glucosamine, and glucuronic acid. In MDMI, imprinting sites are anchored on the surface of self-assembled surfactant micelles, and sol-gel polymerization of metal oxide precursors and organically modified silanes create a material complementary to the imprinting sites. The micelles reduce the need for solvents during processing, stabilize the material during drying, and serve as well-defined pore templates that can be removed after curing to make the imprinted sites accessible. A well designed MDMI process is hypothesized to produce materials that selectively adsorb the complex carbohydrate for which the imprinting sites were designed. This collaborative project employs the expertise of chemical and materials engineering and synthetic chemistry to focus synergistically on three critical aspects of the development of the MDMI process for molecules with acidic (glucuronic acid) and basic (glucosamine) functionality. The first aim addresses control of the interactions between material precursors and imprinting molecule to create a perfect binding pocket. The second aim addresses the design and predictive synthesis of a high-porosity, accessible matrix to support the imprinted sites based on knowledge of surfactant phase behavior and interactions. The third aim addresses the synthesis of the imprinting molecules themselves--specifically, molecules that effectively play dual roles as pore templates and molecular imprinting sites. Each one of these aims begins from easily accessible experimental systems and builds in complexity as milestones are reached toward the ultimate goal of imprinting complex polysaccharides. The molecular imprinting of ceramics through dual-use pore templating/molecular imprinting molecules is potentially transformative to the development of high performance adsorbents for the separation of functional polysaccharides. By combining the synthetic versatility of sol-gel materials and the selectivity of molecular imprinting, the proposed work will establish approaches to customizing ceramics through the knowledge of imprinting and carbohydrate binding mechanisms. Mimicry of the highly selective lock and key interaction between glycans and proteins within synthetic sol-gel matrices will be developed for the isolation of biologically relevant polysaccharides. Success of this project will enhance our knowledge of the role of carbohydrates in biological function, expand the commercial potential of these molecules, and develop personnel capable of leading the field of complex carbohydrate separations. The successful development of MDMI for saccharide-imprinted materials will advance synthetic saccharide purification, and also the recovery of valuable agricultural products and plant-based drug discovery, and eventually provide for improved platforms for carbohydrate sensors and enzyme-mimicking catalysts. The proposed project will highlight the critical role of bioseparations and develop outreach materials, research experiences, and curriculum that expand the impact of a new undergraduate Biopharmaceutical Engineering Certificate program at the University of Kentucky to graduate level education.
复杂碳水化合物在生物系统中发挥着许多不可或缺的作用。生物活性多糖(聚糖)与细胞外部的蛋白质相互作用,并参与控制细胞间的通讯、粘附和物质运输。由于认识到碳水化合物对于许多细胞功能和疾病状态(从唇疱疹到癌症)至关重要,因此需要分离和纯化特定碳水化合物以用作药物。然而,合成和纯化特定碳水化合物的技术落后于糖生物学家识别碳水化合物结构和功能的能力。该项目将开发溶胶-凝胶陶瓷材料的微相定向分子印迹(MDMI),以设计选择性的、稳定的材料,用于基于对葡萄糖、葡萄糖胺和葡萄糖醛酸的聚糖结构单元的识别来分离和纯化复杂碳水化合物。在MDMI中,印迹位点锚定在自组装表面活性剂胶束的表面上,金属氧化物前体和有机改性硅烷的溶胶-凝胶聚合形成与印迹位点互补的材料。胶束减少了加工过程中对溶剂的需求,在干燥过程中稳定了材料,并充当了明确的孔模板,可以在固化后将其移除,以便可以访问压印位点。假设精心设计的 MDMI 工艺可以生产出选择性吸附复合碳水化合物的材料,而印记位点正是针对该复杂碳水化合物而设计的。该合作项目利用化学和材料工程以及合成化学的专业知识,协同关注具有酸性(葡萄糖醛酸)和碱性(葡萄糖胺)功能分子的 MDMI 工艺开发的三个关键方面。第一个目标是控制材料前体和印记分子之间的相互作用,以创建完美的结合袋。第二个目标是基于表面活性剂相行为和相互作用的知识,解决高孔隙率、可接近的基质的设计和预测合成,以支持印迹位点。第三个目标涉及印迹分子本身的合成,特别是有效发挥孔模板和分子印迹位点双重作用的分子。这些目标中的每一个目标都从易于访问的实验系统开始,并随着里程碑的实现而变得复杂,以实现印记复杂多糖的最终目标。通过两用孔模板/分子印迹分子对陶瓷进行分子印迹可能会改变用于分离功能多糖的高性能吸附剂的开发。通过结合溶胶-凝胶材料的合成多功能性和分子印迹的选择性,拟议的工作将通过印迹和碳水化合物结合机制的知识建立定制陶瓷的方法。将开发模拟合成溶胶-凝胶基质中聚糖和蛋白质之间的高度选择性锁定和关键相互作用,以用于分离生物学相关的多糖。该项目的成功将增强我们对碳水化合物在生物功能中的作用的了解,扩大这些分子的商业潜力,并培养能够领导复杂碳水化合物分离领域的人员。用于糖印迹材料的MDMI的成功开发将促进合成糖的纯化,以及有价值农产品的回收和基于植物的药物发现,并最终为碳水化合物传感器和模拟酶催化剂提供改进的平台。拟议的项目将强调生物分离的关键作用,并开发推广材料、研究经验和课程,以扩大肯塔基大学新的本科生生物制药工程证书课程对研究生教育的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hans-Joachim Lehmler其他文献

Supercritical carbon dioxide swelling of fluorinated and hydrocarbon surfactant templates in mesoporous silica thin films
  • DOI:
    10.1016/j.jcis.2011.10.051
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kaustav Ghosh;Hans-Joachim Lehmler;Stephen E. Rankin;Barbara L. Knutson
  • 通讯作者:
    Barbara L. Knutson
Exposure to e-cigarettes reduces PLAC1 expression in trophoblast cells
  • DOI:
    10.1016/j.ajog.2021.11.1121
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Korbi M. Burkey;Eric Devor;Hannah J. Slowey;Emily S. Leibold;Hans-Joachim Lehmler;Wei Bao;Vernat Exil;Mark K. Santillan;Donna A. Santillan
  • 通讯作者:
    Donna A. Santillan
Identification of polychlorinated biphenyls (PCBs) and PCB metabolites associated with changes in the gut microbiome of female mice exposed to an environmental PCB mixture
鉴定与暴露于环境多氯联苯混合物的雌性小鼠肠道微生物组变化相关的多氯联苯(PCBs)和 PCB 代谢物
  • DOI:
    10.1016/j.jhazmat.2025.137688
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Laura E. Dean;Hui Wang;Xueshu Li;Rachel L. Fitzjerrells;Anthony E. Valenzuela;Kari Neier;Janine M. LaSalle;Ashutosh Mangalam;Pamela J. Lein;Hans-Joachim Lehmler
  • 通讯作者:
    Hans-Joachim Lehmler
Exposure to PCB52 (2,2′,5,5′-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose
  • DOI:
    10.1016/j.etap.2024.104612
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Francoise A. Gourronc;Amanda J. Bullert;Brynn Kyleakin Helm-Kwasny;Andrea Adamcakova-Dodd;Hui Wang;Xuefang Jing;Xueshu Li;Peter S. Thorne;Hans-Joachim Lehmler;James A. Ankrum;Aloysius J. Klingelhutz
  • 通讯作者:
    Aloysius J. Klingelhutz
7.4 Adolescent Pesticide Exposure and ADHD Risk: Mechanisms of Immediate Effect and Long-Term Vulnerability
  • DOI:
    10.1016/j.jaac.2022.07.596
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hanna Stevens;Jonathan Doorn;Mackenzie M. Conlon;Robert J. Taylor;Hans-Joachim Lehmler
  • 通讯作者:
    Hans-Joachim Lehmler

Hans-Joachim Lehmler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321297
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了