Turbulent Drag Reduction using Superhydrophobic Surfaces

使用超疏水表面减少湍流阻力

基本信息

  • 批准号:
    0967531
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

0967531RothsteinThe research has the objective to develop and apply an innovative new passive technique for producing significant drag reduction in the turbulent flows. By treating a solid surface to make it superhydrophobic it is possible to dramatically affect how this solid surface interacts with a flowing liquid. Preliminary experiments have shown that superhydrophobic surfaces can be utilized to reduce drag in laminar flows through microchannels by up to 40%. The new research is aimed to show through the proposed experiments that these surfaces can also be used to delay the transition to turbulence and produce substantial drag reduction in both internal and external turbulent flows. The development of the proposed technology could have a profound effect on a huge variety of existing technologies, resulting in benefits ranging from a reduction in the pressure drop in pipe flows to an increase in range and speed of ships.Intellectual Merit:Superhydrophobic surfaces are engineered by taking materials with micron or nanoscale surfaces roughness and chemically treating them to make them hydrophobic. Because of the hydrophobicity of these microscale and nanoscale protrusions, when water is brought in contact with a superhydrophobic surface, it does not fully wet the surface. Instead, it remains in contact with only the peaks of the surface topology resulting in a shear free air water interface. The PI has shown through direct velocity measurements and comparison to numerical simulations and analytical theory that drag reduction in laminar flows results from the reduction in the effective surface area of the solid in contact with the flowing fluid and the presence of this shearfree air water interface. By inducing an effective slip, reducing the effective surface area and reducing the wall shear stress in a flow, these super-hydrophobic surfaces should also produce considerable drag reduction in turbulent flows. The preliminary experiments show upwards of 50% drag reduction in turbulent channel flows, however the work was narrowly focused and limited. With a wealth of design space still to be explored this number could increase substantially. This technique represents a new passive approach to turbulent drag reduction that does not require any modification of the transported fluid or active control by the device only the development and use of hydrophobic micro and nanopatterned surfaces. Various patterns and superhydrophobic materials will be tested to maximize turbulent drag reduction using durable, long-lived and easily applied superhydrophobic surfaces. These surfaces will be investigated in a number of different flows including channel flow, flow past a flat plate and flow past a number of different blunt and streamlined objects.In this proposal we will i) explore a number of different designs of superhydrophobic surfaces to attempt to better understand the origins and scaling or turbulent drag reduction, ii) extend the turbulent drag reduction measurements to high Reynolds numbers to investigate if the superhydrophobic drag reduction phenomena is a transition effect or robust at higher speeds, iii) investigate the importance of air-water interface shape and deflection and iv) investigate the impact of superhydrophobic surfaces on the flow past blunt or streamlined bodies where stagnation points are present and separation is expected.Broader Impacts: The proposed research program bridges fundamental experimental wetting phenomena and fluid dynamics with commercial and industrial applications where drag reduction could save significant amount of money, reduce the countrys dependence on fossil fuels and dramatically reduce the CO2 footprint of commercial and military shipping. The results from this research program should lead to a whole new way of thinking about turbulent drag reduction. The project has several educational components including involvement of undergraduates in the research, K-12 outreach and the recruitment of students from underrepresented groups through the NEAGEP centered at UMASS.
0967531 Rothstein该研究的目的是开发和应用一种创新的新被动技术,用于在湍流中产生显着的减阻效果。通过处理固体表面使其超疏水,可以显著影响该固体表面如何与流动液体相互作用。初步实验表明,超疏水表面可以用来减少通过微通道的层流中的阻力高达40%。这项新研究的目的是通过拟议的实验表明,这些表面也可用于延迟向湍流的过渡,并在内部和外部湍流中产生实质性的减阻。该技术的发展可能会对各种现有技术产生深远的影响,从减少管道流动的压降到增加船舶的航程和速度。智力优势:超疏水表面是通过对具有微米或纳米级表面粗糙度的材料进行化学处理使其疏水而设计的。由于这些微米级和纳米级突起的疏水性,当水与超疏水表面接触时,它不会完全润湿表面。相反,它保持仅与表面拓扑的峰接触,导致无剪切的空气-水界面。 PI已经通过直接速度测量和与数值模拟和分析理论的比较表明,层流中的减阻是由于与流动流体接触的固体的有效表面积的减少以及这种无剪切空气-水界面的存在。通过诱导有效滑移、减小有效表面积和减小流动中的壁剪切应力,这些超疏水表面还应当在湍流中产生相当大的减阻。初步实验表明,在湍流槽道流中,阻力减少了50%以上,但这项工作的重点很窄,范围很有限。由于仍有大量的设计空间有待探索,这一数字可能会大幅增加。这种技术代表了一种新的被动方法,湍流减阻,不需要任何修改的传输流体或主动控制的设备,只有疏水性的微米和纳米图案化表面的开发和使用。将测试各种图案和超疏水材料,以最大限度地减少湍流阻力,使用耐用,寿命长,易于应用的超疏水表面。这些表面将在许多不同的流动中进行研究,包括通道流动、流过平板的流动以及流过许多不同的钝头和流线型物体的流动。在本提案中,我们将i)探索许多不同的超疏水表面设计,以试图更好地理解超疏水表面的起源和缩放或湍流减阻,ii)将湍流减阻测量扩展到高雷诺数,以研究超疏水减阻现象是否是过渡效应或在较高速度下的鲁棒性,iii)研究空气-水界面形状和偏转的重要性; iv)研究超疏水表面对流过存在驻点和预期分离的钝头或流线型物体的流动的影响。拟议的研究计划将基本的实验润湿现象和流体动力学与商业和工业应用联系起来,在这些应用中,减阻可以节省大量资金,减少国家对化石燃料的依赖,并大大减少商业和军事航运的二氧化碳足迹。这项研究计划的结果将为减少湍流阻力提供一种全新的思路。该项目有几个教育组成部分,包括本科生参与研究,K-12推广和通过以UMASS为中心的NEAGEP从代表性不足的群体中招募学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Rothstein其他文献

Evaluating essential oils as biocidal anti-drift adjuvants for safe and sustainable agricultural spray enhancement
  • DOI:
    10.1016/j.jaerosci.2024.106421
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph Heng;Samuel Bechard;David Lach;Jonathan Rothstein;Minghe Wang;Sebastian Ubal;David Julian McClements;Carlos M. Corvalan;Jiakai Lu
  • 通讯作者:
    Jiakai Lu

Jonathan Rothstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Rothstein', 18)}}的其他基金

Suppression of Flow-Induced Oscillations through the Addition of Viscoelasticity to the Fluid Flow
通过向流体流动添加粘弹性来抑制流动引起的振荡
  • 批准号:
    2126175
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Low-Cost, Non-invasive, Fast Sample Collection System for COVID-19 Viral Load Level Diagnosis: Point-of-Care and Environmental Testing
RAPID:协作研究:用于 COVID-19 病毒载量水平诊断的低成本、非侵入性快速样本采集系统:护理点和环境测试
  • 批准号:
    2032500
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Individual and Collective Dynamics of Marangoni Surface Tension Effects between Particles
合作研究:颗粒间马兰戈尼表面张力效应的个体和集体动力学
  • 批准号:
    1705519
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
The Role of Interface Shape on Drag Reduction and Filtration using Superhydrophobic Surfaces
界面形状对超疏水表面减阻和过滤的作用
  • 批准号:
    1334962
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: The Stability of Viscoelastic Wormlike Micelle Solutions in Extensional Flows
职业生涯:粘弹性蠕虫状胶束溶液在拉伸流动中的稳定性
  • 批准号:
    0547180
  • 财政年份:
    2006
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Theoretical and Experimental Analysis of Wormlike Micellar Solutions and Polymeric Fluids
合作提案:蠕虫状胶束溶液和聚合物流体的理论和实验分析
  • 批准号:
    0406224
  • 财政年份:
    2004
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

超稳定Drag-free卫星编队动力学建模与控制研究
  • 批准号:
    11002040
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on turbulent drag reduction by longitudinal vortex suppression control using an acoustic streaming type flow field control device
声流式流场控制装置纵向涡抑制控制湍流减阻研究
  • 批准号:
    23H01629
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CBET-EPSRC: Surfactant impact on drag reduction of superhydrophobic surfaces in turbulent flows
CBET-EPSRC:表面活性剂对湍流中超疏水表面减阻的影响
  • 批准号:
    EP/T030739/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
CBET-EPSRC: Surfactant impact on drag reduction of superhydrophobic surfaces in turbulent flows
CBET-EPSRC:表面活性剂对湍流中超疏水表面减阻的影响
  • 批准号:
    2054894
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Innovative Drag Reduction Technology using 3-D Effect of Gas-Liquid Two-Phase Turbulent Boundary Layers
利用气液两相湍流边界层3D效应的创新减阻技术
  • 批准号:
    21J11854
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
[EnAble]: Developing and Exploiting Intelligent Approaches for Turbulent Drag Reduction
[EnAble]:开发和利用减少湍流阻力的智能方法
  • 批准号:
    EP/T020946/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
[EnAble]: Developing and Exploiting Intelligent Approaches for Turbulent Drag Reduction
[EnAble]:开发和利用减少湍流阻力的智能方法
  • 批准号:
    EP/T021144/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Smart control of gas-liquid two-phase turbulent boundary layers for frictional drag reduction
智能控制气液两相湍流边界层以减少摩擦阻力
  • 批准号:
    21H04538
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Relaminarization and maximum drag reduction in turbulent boundary layer flow due to high speed injection of surfactant solution
由于表面活性剂溶液的高速注入,湍流边界层流的重新层化和最大减阻
  • 批准号:
    20H02065
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Skin friction drag reduction using synthetic jets on a flat plate turbulent boundary layer
在平板湍流边界层上使用合成射流减少表面摩擦阻力
  • 批准号:
    518560-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Maximization of frictional drag reduction effect by coarseness and fineness distributed bubbles using multiphase turbulent shear stress meter
使用多相湍流剪切应力计通过粗细分布的气泡最大化摩擦减阻效果
  • 批准号:
    20K04255
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了