SoCS: Assessing Information Credibility Without Authoritative Sources
SoCS:在没有权威来源的情况下评估信息可信度
基本信息
- 批准号:0968489
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rumors, smears, and conspiracy theories can now spread quickly through email, blogs, and other social media. Recipients of such messages may not question their validity. Moreover, even upon careful investigation and reflection, not everyone will agree about the validity of particular claims. This project will develop tools that help people make personal assessments of credibility. Rather than relying on particular sources as authoritative arbiters of ground truth, the goal is to minimize the amount of "social implausibility." That is, the tool will identify assertions that are disbelieved by "similar" people (those who, after careful consideration, someone tended to agree with in the past) or come from sources that someone has tended to disagree with. A text mining system for online media will be developed to extract controversial assertions and the beliefs expressed by users about those assertions. Comparisons of beliefs about common assertions, and retractions or updates to beliefs, will be tracked as part of personalized reputation measures.This work is the first attempt to formally address the automatic assessment of information credibility based on text mining and social computational systems. The techniques will provide the solution to many challenging research problems in information retrieval and reputation networks. The techniques are broadly applicable to other domains where the credibility of content and reputation of sources is a concern, to help a broad class of information consumers. Prototype tools will be released freely and demonstrated in high schools, thereby building awareness of the diversity of beliefs around topics of public interest.
谣言、诽谤和阴谋论现在可以通过电子邮件、博客和其他社交媒体迅速传播。接收此类信息的人不得质疑其有效性。此外,即使经过仔细的调查和反思,也不是每个人都会同意特定主张的有效性。该项目将开发工具,帮助人们对可信度进行个人评估。与其依赖特定的消息来源作为事实的权威仲裁者,其目标是尽量减少“社会不可信”的数量。也就是说,该工具将识别“相似”的人(经过仔细考虑,某人过去倾向于同意的人)不相信的断言,或者来自于某人倾向于不同意的来源。本文将开发一个用于网络媒体的文本挖掘系统,以提取有争议的断言和用户对这些断言表达的信念。对常见断言的信念比较,以及信念的撤回或更新,将作为个性化声誉测量的一部分进行跟踪。这项工作是第一次尝试正式解决基于文本挖掘和社会计算系统的信息可信度自动评估。这些技术将为信息检索和信誉网络中许多具有挑战性的研究问题提供解决方案。这些技术广泛适用于其他领域,其中内容的可信度和来源的声誉是一个问题,以帮助广大类别的信息消费者。原型工具将免费发布,并在高中展示,从而建立围绕公共利益主题的信仰多样性意识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiaozhu Mei其他文献
Emoji Promotes Developer Participation and Issue Resolution on GitHub
Emoji 促进 GitHub 上的开发者参与和问题解决
- DOI:
10.48550/arxiv.2308.16360 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuhang Zhou;Xuan Lu;Ge Gao;Qiaozhu Mei;Wei Ai - 通讯作者:
Wei Ai
Deriving User Preferences of Mobile Apps from their Management Activities
- DOI:
http://dx.doi.org/10.1145/3015462 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Xuanzhe Liu;Wei Ai;Huoran Li;Jian Tang;Gang Huang;Qiaozhu Mei - 通讯作者:
Qiaozhu Mei
How Do Healthcare Professionals Personalize Their Software? A Pilot Exploration Based on an Electronic Health Records Search Engine
医疗保健专业人员如何个性化他们的软件?
- DOI:
10.3233/shti190459 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kai Zheng;Yunan Chen;Julia Adler;A. Rosenberg;Danny T. Y. Wu;Qiaozhu Mei;D. Hanauer - 通讯作者:
D. Hanauer
Understanding Diverse Usage Patterns from Large-Scale Appstore-Service Profiles
从大规模应用商店服务配置文件中了解不同的使用模式
- DOI:
10.1109/tse.2017.2685387 - 发表时间:
2017-02 - 期刊:
- 影响因子:0
- 作者:
Xuanzhe Liu;Huoran Li;Xuan Lu;Tao Xie;Qiaozhu Mei;Feng Feng;Hong Mei - 通讯作者:
Hong Mei
Attribute Reduction Algorithm Based on Rough Set and Database Technology
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Qiaozhu Mei - 通讯作者:
Qiaozhu Mei
Qiaozhu Mei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiaozhu Mei', 18)}}的其他基金
NSF Student Travel Grant for 2017 Conference on Knowledge Discovery and Data Mining (KDD 2017)
2017 年知识发现和数据挖掘会议 (KDD 2017) NSF 学生旅费补助金
- 批准号:
1742808 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient and Exact Methods for Big Data Reduction
BIGDATA:协作研究:F:大数据缩减的高效且精确的方法
- 批准号:
1633370 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CiC (RDDC): Wordsmith in the Cloud - Refining Language Models Using Web-Scale Language Networks
CiC (RDDC):云中的 Wordsmith - 使用 Web 规模语言网络完善语言模型
- 批准号:
1048168 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: Eyes of the Foreseer - Integrative and In Situ Information Retrieval and Mining in Online Communities
职业:预见者之眼 - 在线社区中的集成和原位信息检索和挖掘
- 批准号:
1054199 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
相似海外基金
A practical study on assessing the health literacy of patients with hematological malignancies and enhancing the system for providing information on the Internet
评估血液系统恶性肿瘤患者健康素养及完善互联网信息提供系统的实践研究
- 批准号:
23K17011 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: CSL-MultiAD: Assessing Collaborative STEM Learning through Rich Information Flow based on Multi-Sensor Audio Diarization
协作研究:CSL-MultiAD:通过基于多传感器音频二值化的丰富信息流评估协作 STEM 学习
- 批准号:
2330366 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Assessing Minor Children’s Readiness to Receive Genetic Information
评估未成年儿童接受遗传信息的准备情况
- 批准号:
10283134 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Mobilizing the Chinese Immigrant Community and Battling the Potential COVID-19 outbreak in the Greater Toronto Area: Gathering essential information, creating a mutual support quarantine network and assessing psychological impacts
动员华人移民社区,应对大多伦多地区潜在的 COVID-19 疫情:收集重要信息,建立互助隔离网络并评估心理影响
- 批准号:
422630 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Operating Grants
Collaborative Research: CSL-MultiAD: Assessing Collaborative STEM Learning through Rich Information Flow based on Multi-Sensor Audio Diarization
协作研究:CSL-MultiAD:通过基于多传感器音频二值化的丰富信息流评估协作 STEM 学习
- 批准号:
1918012 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Assessing the Effects of Ballot Sequence and Candidate Information on Voting Behavior with Evidence from Mixed-Member Electoral Systems
利用混合成员选举制度的证据评估选票顺序和候选人信息对投票行为的影响
- 批准号:
421433480 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Research Grants
Collaborative Research: CSL-MultiAD: Assessing Collaborative STEM Learning through Rich Information Flow based on Multi-Sensor Audio Diarization
协作研究:CSL-MultiAD:通过基于多传感器音频二值化的丰富信息流评估协作 STEM 学习
- 批准号:
1918032 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Investigating factors including familial information influencing blood pressure in childhood and assessing utility of blood pressure measurement
调查影响儿童血压的家庭信息等因素并评估血压测量的效用
- 批准号:
18K15837 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing the Influence of Cultural Variables, Perceptions, and Earthquake Hazard Information on Household Emergency Preparedness
评估文化变量、认知和地震灾害信息对家庭应急准备的影响
- 批准号:
1663642 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Assessing and improving the use of online information about child development, health and well-being by parents with low socioeconomic standards and their children
评估和改善社会经济标准较低的父母及其子女对有关儿童发展、健康和福祉的在线信息的使用
- 批准号:
383312 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Studentship Programs