Collaborative Research: Spatial Model-based Methods for RNA-seq Analysis

合作研究:基于空间模型的 RNA-seq 分析方法

基本信息

  • 批准号:
    1000443
  • 负责人:
  • 金额:
    $ 27.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

RNA sequencing (RNA-seq) is a powerful new technology for mapping and quantifying transcriptomes using next generation ultra-high-throughput sequencing technologies. Although extremely promising, massive data produced by RNA-seq, substantial biases, and uncertainty in short read alignment pose daunting challenges for researchers when analyzing RNA-seq data. Most of the current analytic programs enumerate total number of tags landed within each exon and use normalized counts as the expression measure. Such methods ignore variation and correlation in sequencing depth within an exon, which may result in less accurate expression measures. Because the correlation between the read counts of adjacent bases depends on the distance between them, it is referred to as spatial correlation. Large base-specific variations and between-bases spatial correlations make naive approaches, such as averaging to normalizing RNA-seq data and quantifying gene/isoform expressions, ineffective. The presence of location-specific variation as well as spatial correlation is an outstanding characteristic of many spatial data in Geostatistics, Spatial Epidemiology, and image processing, and it has been studied in the literature of Spatial Statistics. In this project, the investigators propose to apply and extend the ideas, models and methodologies rooted in Spatial Statistics to model and analyze RNA-seq data. In particular, the investigators develop spatial Poisson mixed effects models including a hierarchical model and a mixture model to accommodate biases, variations, and correlations present in RNA-seq data so as to accurately estimate gene/isoform expression levels and to facilitate gene/isoform expression comparison and novel transcript structure or activities discovery. Furthermore, the investigators will apply the proposed methods to analyze real RNA-seq data generated from prostate cancer and psoriasis transcriptomic studies. Monitoring gene expression levels genome-wide is important for understanding the mechanisms of many biological processes. In the past decade, microarray has been the main tool in laboratories for measuring gene expression levels. Recently, RNA-seq, an emerging new technology, has been shown to offer key advantages over microarray in measuring gene expression profiles. However, existing methods for quantifying expression levels from RNA-seq data are crude and unsatisfactory. This greatly compromises the power of RNA-seq for genomic and transcriptomic studies. In this project, having carefully investigated the unique characteristics of RNA-seq data, the investigators propose a series of advanced statistical models, and aim to develop effective and efficient methods for RNA-seq data analysis. The methods generated from this project will greatly benefit a fast growing community of researchers who are planning to conduct RNA-seq experiments with data analysis. Furthermore, this project also constitutes a significant contribution to the advance of statistical methodology development. The investigators will also develop and support open-source computer software for RNA-seq data analysis based on the methods resulting from this project and make it freely available to the public online.
RNA测序(RNA-seq)是利用下一代超高通量测序技术绘制和量化转录本的一项强大的新技术。尽管RNA-SEQ产生的海量数据非常有希望,但在分析RNA-SEQ数据时,大量的偏差和短读比对的不确定性给研究人员带来了令人望而生畏的挑战。目前的大多数分析程序都列举了每个外显子内的标签总数,并使用归一化计数作为表达度量。这种方法忽略了外显子内测序深度的变异和相关性,这可能导致不太准确的表达测量。因为相邻碱基读数之间的相关性取决于它们之间的距离,所以它被称为空间相关性。较大的碱基特异性差异和碱基间的空间相关性使得简单的方法,如对RNA序列数据进行平均化和量化基因/异构体表达,是无效的。地理统计学、空间流行病学、图像处理等领域的许多空间数据都具有空间相关性和位置相关性,空间统计学文献对其进行了研究。在这个项目中,研究人员建议应用和推广空间统计学的思想、模型和方法来模拟和分析RNA-seq数据。特别是,研究人员开发了空间泊松混合效应模型,包括分层模型和混合模型,以适应RNA-SEQ数据中存在的偏差、变异和相关性,从而准确地估计基因/异构体表达水平,并促进基因/异构体表达比较和新的转录本结构或活性的发现。此外,研究人员将应用所提出的方法来分析前列腺癌和牛皮癣转录研究产生的真实RNA-SEQ数据。在全基因组范围内监测基因表达水平对于理解许多生物过程的机制是重要的。在过去的十年中,微阵列已经成为实验室测量基因表达水平的主要工具。最近,RNA-seq这一新兴的新技术被证明在测量基因表达谱方面比微阵列具有关键的优势。然而,现有的从RNA-SEQ数据中量化表达水平的方法是粗糙的和不令人满意的。这极大地削弱了RNA-seq在基因组和转录组研究中的能力。在这个项目中,在仔细研究了RNA-seq数据的独特特征后,研究人员提出了一系列先进的统计模型,旨在开发有效和高效的RNA-seq数据分析方法。这个项目产生的方法将极大地造福于快速增长的研究人员社区,他们正计划进行具有数据分析的RNA-SEQ实验。此外,该项目也对推动统计方法的发展作出了重大贡献。调查人员还将根据该项目产生的方法,开发和支持用于RNA-seq数据分析的开放源码计算机软件,并向公众免费在线提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Michael Zhu其他文献

Yu Michael Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Michael Zhu', 18)}}的其他基金

Collaborative Research: Penalization Methods for Screening, Variable Selection and Dimension Reduction in High-Dimensional Regression via Multiple Index Models
合作研究:通过多指标模型进行高维回归筛选、变量选择和降维的惩罚方法
  • 批准号:
    1107047
  • 财政年份:
    2011
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Integral Transform Methods for Sufficient Dimension Reduction in Regression
合作研究:回归中充分降维的积分变换方法
  • 批准号:
    0707004
  • 财政年份:
    2007
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Constructing Optimal Factorial Designs for Multiple Groups of Factors: Theory, Methods and Applications
构建多组因子的最佳因子设计:理论、方法和应用
  • 批准号:
    0405694
  • 财政年份:
    2004
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: SPARC: Conducting Collaborative Research and Leveraging Resources to Advance Spatial Archaeometry
协作研究:SPARC:开展协作研究并利用资源推进空间考古学
  • 批准号:
    2309809
  • 财政年份:
    2023
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225096
  • 财政年份:
    2023
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225098
  • 财政年份:
    2023
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
  • 批准号:
    2332010
  • 财政年份:
    2023
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Experiments and Modeling for Spatial, Finite, and Fast Rheometry of Graded Hydrogels using Inertial Cavitation
合作研究:利用惯性空化对梯度水凝胶进行空间、有限和快速流变测量的综合实验和建模
  • 批准号:
    2232426
  • 财政年份:
    2023
  • 资助金额:
    $ 27.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了