GOALI: DIAGNOSIS AND PROGNOSIS OF AUTOMOTIVE CHASSIS SYSTEMS
目标:汽车底盘系统的诊断和预测
基本信息
- 批准号:1001445
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed collaborative project with GM R&D center, Warren, MI seeks to develop hybrid model-based/data-driven/knowledge-based prognostic framework, and the associated prediction and inference algorithms, to detect and isolate incipient component degradations in coupled systems. The focus will be on chassis health determination (meaning the health status of steering, braking and suspension components, as well as functionalities that use these components such as the StabiliTrak system) to replaceable components (e.g., broken tie rod, worn out brake pads or blown tire, malfunctioning ABS control module). The diagnostic and prognostic framework will be validated on test fleet prior to implementing in the production versions. Intellectual Merit: Existing prognostic and diagnostic algorithms employed in automotive systems tend to be component-centric. They often fail to provide correct diagnosis due to neglect of cross-subsystem failure propagation and unreliable tests. The proposed research seeks to overcome these limitations by explicitly modeling the cross-subsystem effects via a graphical model and by developing a multi-layer probabilistic reasoning process spanning sensed data → predicted features → diagnostic trouble codes → failure modes → replaceable components and subsystems. Modeling the time evolution of coupled component states as factorial hidden Markov models and the development of computationally-efficient inference algorithms in multi-layer graphical models is a novel aspect of the proposed effort. In addition, combining model-based, data-driven and knowledge-based approaches in a unified way to solve practical diagnosis and prognosis problems in the next-generation automotive vehicles is another contribution of this work. Broader Impact: The proposed research improves the competitiveness of American automotive industry by reducing warranty costs, and enhancing vehicle availability and customer satisfaction. The PI plans to promulgate the results of this research to the broader industrial community via short courses, tutorials, conference presentations and journal manuscripts.
拟议的合作项目与通用汽车公司研发中心,沃伦,密歇根州寻求开发混合模型为基础的/数据驱动的/知识为基础的预测框架,以及相关的预测和推理算法,检测和隔离耦合系统中的初期组件退化。重点将放在底盘健康状况确定(意味着转向,制动和悬架组件的健康状态,以及使用这些组件的功能,如StabiliTrak系统)到可更换组件(例如,断裂的横拉杆、磨损的刹车片或爆胎、ABS控制模块故障)。诊断和预测框架将在生产版本中实施之前在测试机队上进行验证。智能优点:汽车系统中采用的现有预测和诊断算法往往以组件为中心。由于忽略了跨子系统故障传播和不可靠的测试,他们往往不能提供正确的诊断。拟议的研究旨在克服这些局限性,通过明确建模的跨子系统的影响,通过图形模型和开发一个多层概率推理过程跨越感知数据#8594;预测功能#8594;诊断故障代码#8594;故障模式#8594;可更换的组件和子系统。耦合组件状态的时间演化模拟阶乘隐马尔可夫模型和计算效率的推理算法在多层图形模型的发展是一个新的方面所提出的努力。此外,将基于模型、数据驱动和基于知识的方法以统一的方式结合起来,解决下一代汽车中的实际诊断和预后问题,是这项工作的另一个贡献。更广泛的影响:该研究通过降低保修成本、提高车辆可用性和客户满意度来提高美国汽车行业的竞争力。PI计划通过短期课程,教程,会议演示和期刊手稿向更广泛的工业界公布这项研究的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Pattipati其他文献
A view on full-diversity modulus-preserving rate-one linear space–time block codes
- DOI:
10.1016/j.sigpro.2005.10.002 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:
- 作者:
Shengli Zhou;Xiaoli Ma;Krishna Pattipati - 通讯作者:
Krishna Pattipati
Krishna Pattipati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Pattipati', 18)}}的其他基金
CyberSEES: Type 2: Fault Detection, Diagnosis and Prognosis of HVAC systems
CyberSEES:类型 2:HVAC 系统的故障检测、诊断和预测
- 批准号:
1331850 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Small: Collaborative Research: Fault Diagnosis and Prognosis in a Network of Embedded Systems in Automotive Vehicles
CPS:小型:协作研究:汽车嵌入式系统网络中的故障诊断和预测
- 批准号:
0931956 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Computer-Aided Design Techniques for Automated Test Program Development
自动测试程序开发的计算机辅助设计技术
- 批准号:
8460598 - 财政年份:1985
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Harnessing the Host Response to Leptosporisis for Diagnosis and Prognosis
利用宿主对钩端孢子虫病的反应进行诊断和预后
- 批准号:
10643293 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Towards resiliency through health monitoring, diagnosis, prognosis, and fault tolerance in complex and cyber-physical systems with applications to electrified and connected vehicles.
通过复杂网络物理系统的健康监测、诊断、预测和容错,并应用于电气化和互联车辆,实现弹性。
- 批准号:
RGPIN-2018-04002 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Online Fault Diagnosis, Prognosis, and Health Monitoring of Small Satellites
小卫星在线故障诊断、预测和健康监测
- 批准号:
RGPIN-2020-05513 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10416206 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Online Diagnosis and Lifetime Prognosis of Next Generation Energy Storage Systems
下一代储能系统的在线诊断和寿命预测
- 批准号:
RGPIN-2018-05299 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Attention Networks and Optimized Deep Learning Architectures for Cancer Diagnosis and Prognosis in Medical Imaging
用于医学影像中癌症诊断和预后的注意力网络和优化的深度学习架构
- 批准号:
RGPIN-2021-03417 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Electrophysiological Signature of Pediatric Concussion: Contributing Knowledge to Improve Clinical Diagnosis, Prognosis, and Management
儿童脑震荡的电生理特征:贡献知识以改善临床诊断、预后和管理
- 批准号:
465363 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Operating Grants
Identifying Neurophysiological Markers of Emotion Regulation Relevant to Adolescent Depression Diagnosis and Prognosis: A Comparison of Classification Models
识别与青少年抑郁症诊断和预后相关的情绪调节的神经生理标志物:分类模型的比较
- 批准号:
10617686 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Rapid Microfluidic-Based Point-of-Care Assessment of Epigenetic Marks for Diagnosis, Prognosis and Response to Therapy in Critical Illness
基于微流控的快速护理点表观遗传标记评估,用于危重疾病的诊断、预后和治疗反应
- 批准号:
549575-2020 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Collaborative Health Research Projects
QUANTIMA: Quantitative imaging platform for the diagnosis, subtyping, staging and outcome prognosis in dementia
QUANTIMA:用于痴呆症诊断、分型、分期和结果预后的定量成像平台
- 批准号:
MR/W011980/1 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Fellowship














{{item.name}}会员




