Kinetic Physics of Homogeneous Turbulence in Collisionless Plasmas

无碰撞等离子体中均匀湍流的动力学物理

基本信息

  • 批准号:
    1004270
  • 负责人:
  • 金额:
    $ 5.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-15 至 2013-04-30
  • 项目状态:
    已结题

项目摘要

The is a jointly funded project between the National Science Foundation and the Department of Energy.The multi-scale nature of turbulence poses a severe computational challenge for kinetic simulations. This project will aggressively push the limits of full particle simulations of turbulence in plasmas. A recently developed parallel, implicit, full particle kinetic simulation code will be used to perform simulations that will show how long wavelength modes non-linearly cascade to shorter wavelengths. The focus of this project is on the least understood and most controversial aspect of turbulence, namely the transition of long wavelength turbulence to short, kinetic scales and the properties of turbulence at wavelengths shorter than this transition. The goal is to address the physics of how the long wavelength modes cascade from the inertial range to the short wavelength range in the solar wind. The inertial range is fairly well described by single-fluid, magnetohydrodynamic (MHD) models, which have proved to be a very effective approach to describing long-wavelength fluctuations in the solar wind. Observations have shown that the wavenumber at the spectral break, where the inertial range ends, corresponds to the ion inertial length. The ion inertial length marks the breakdown of single fluid theory and kinetic effects become dominant in this regime. As a result, the short wavelength regime has remained the least understood component of solar wind turbulence and many basic questions such as the physics controlling the breakpoint are not completely understood. The proper treatment of the so-called ?dissipation range? requires a fully kinetic treatment.Turbulence is ubiquitous in plasmas, occurring in a variety of settings such as interstellar medium, accretion disks, planetary magnetospheres, and the solar wind. The main theoretical focus has been on long wavelength turbulence where MHD is a good approximation. This project will use a tandem of wave turbulence theory and state-of-the-art full particle kinetic simulations with unmatched computational resources to investigate the evolution of turbulence from the inertial range down to the short wavelength regime characterized by whistler waves. The proposed activity will enhance the infrastructure for research. The project will use cutting edge simulations including cell-based technology to push the limits of full particle-in-cell (PIC) simulations. These advances will pave the way for the plasma physics community to transition to new techniques for simulations using cell-based computers. The codes will be made available through a free GNU General Public License (v2), via the Google Code project. The web site will include not only the code and sample input files, but it also include (i) a brief description of the code and its methods, (ii) a wikipedia-style manual on how to use the code with an extensive description on how to set up a problem and run it, and (iii) sample graphics files to read and plot the results.
这是美国国家科学基金会和美国能源部共同资助的一个项目,湍流的多尺度特性给动力学模拟带来了严峻的计算挑战。该项目将积极推动等离子体湍流的全粒子模拟的极限。 最近开发的并行,隐式,全粒子动力学模拟代码将被用来执行模拟,将显示如何长波长模式非线性级联到较短的波长。该项目的重点是对湍流的最不了解和最有争议的方面,即长波长湍流向短动力学尺度的过渡,以及波长短于这种过渡的湍流特性。目标是解决太阳风中长波长模式如何从惯性范围级联到短波长范围的物理问题。惯性范围是相当好的描述单流体,磁流体动力学(MHD)模型,这已被证明是一个非常有效的方法来描述长波长的波动在太阳风。观测结果表明,在光谱中断处的波数,惯性范围结束,对应于离子的惯性长度。离子惯性长度标志着单流体理论的崩溃,动力学效应在这一区域中占主导地位。因此,短波长区域仍然是太阳风湍流中了解最少的组成部分,许多基本问题,如控制断点的物理学,都没有完全了解。正确对待所谓的?耗散范围?湍流在等离子体中无处不在,发生在各种环境中,如星际介质,吸积盘,行星磁层和太阳风。主要的理论焦点一直在长波长的湍流,其中MHD是一个很好的近似。该项目将使用一系列波湍流理论和最先进的全粒子动力学模拟,利用无与伦比的计算资源,研究湍流从惯性范围到以哨声波为特征的短波长范围的演变。 拟议的活动将加强研究基础设施。该项目将使用包括基于细胞的技术在内的尖端模拟技术,以推动完全粒子模拟(PIC)的极限。这些进展将为等离子体物理学界过渡到使用基于细胞的计算机进行模拟的新技术铺平道路。这些代码将通过免费的GNU通用公共许可证(v2)通过Google Code项目提供。该网站将不仅包括代码和示例输入文件,而且还包括(i)代码及其方法的简要说明,(ii)关于如何使用代码的维基百科风格手册,其中详细说明了如何设置问题并运行它,以及(iii)用于读取和绘制结果的示例图形文件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Homayoun Karimabadi其他文献

Homayoun Karimabadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Homayoun Karimabadi', 18)}}的其他基金

Kinetic Study of Flux Transfer Events Enabled by Petascale Computing
通过千万亿次计算实现通量传递事件的动力学研究
  • 批准号:
    1104815
  • 财政年份:
    2012
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant
EAGER: Addressing Key Unsolved Issues in Reconnection Physics Through Linear Theory of Tearing Instability
EAGER:通过撕裂不稳定性的线性理论解决重联物理中未解决的关键问题
  • 批准号:
    1105084
  • 财政年份:
    2011
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Standard Grant
Enabling Breakthrough Kinetic Simulations of the Magnetosphere via Petascale Computing
通过千万亿次计算实现磁层的突破性动力学模拟
  • 批准号:
    1036107
  • 财政年份:
    2010
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Breakthrough Kinetic Simulations of the Magnetosphere via Multi-zone Petascale Computing
合作研究:通过多区域千万亿次计算实现磁层的突破性动力学模拟
  • 批准号:
    0904734
  • 财政年份:
    2009
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Standard Grant
GEM: Anti-Parallel and Component Merging Scenarios in Collisionless Reconnection
GEM:无碰撞重连中的反并行和组件合并场景
  • 批准号:
    0802380
  • 财政年份:
    2008
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR: Global Multi-Scale Kinetic Simulations of the Earth's Magnetosphere Using Parallel Discrete Event Simulation
合作研究:ITR:使用并行离散事件模拟对地球磁层进行全球多尺度动力学模拟
  • 批准号:
    0539106
  • 财政年份:
    2005
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR: Global Multi-Scale Kinetic Simulations of the Earth's Magnetosphere Using Parallel Discrete Event Simulation
合作研究:ITR:使用并行离散事件模拟对地球磁层进行全球多尺度动力学模拟
  • 批准号:
    0325046
  • 财政年份:
    2003
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant
Local and Non-local Plasma Transfer Processes at the Dayside Magnetosphere
日侧磁层的局部和非局部等离子体转移过程
  • 批准号:
    0119846
  • 财政年份:
    2001
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant
Kinetic Simulations of Magnetopause Including Ionospheric Effect
包括电离层效应在内的磁层顶动力学模拟
  • 批准号:
    9901665
  • 财政年份:
    2000
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant
Formation and Kinetic Structure of Discontinuities at the Earth's Magnetopause and at the Magnetotail
地球磁顶和磁尾不连续性的形成和动力学结构
  • 批准号:
    9614176
  • 财政年份:
    1997
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
  • 批准号:
    2904538
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Studentship
Searching for New Physics with the CMS experiment at the LHC
通过 LHC 的 CMS 实验寻找新物理
  • 批准号:
    2908368
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Fellowship
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
  • 批准号:
    EP/Y035038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Research Grant
Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
  • 批准号:
    EP/Y036263/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Research Grant
Manchester Nuclear Physics CG 2023
曼彻斯特核物理 CG 2023
  • 批准号:
    ST/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 5.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了