Using Neutron Scattering to Elucidate the Thermodynamics of Conjugated Polymer:Fullerene Nanocomposites
利用中子散射阐明共轭聚合物:富勒烯纳米复合材料的热力学
基本信息
- 批准号:1005987
- 负责人:
- 金额:$ 34.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:In this research program, neutron scattering will be utilized to determine the miscibility, phase diagram, phase-separated structure, interfacial characteristics, and vertical phase separation of conjugated polymer:fullerene thin film mixtures as a function of polymer and fullerene structure, thermal processing, surface structure, and solvent. Conjugated polymers (CPs) are chosen as the focus of this study as they are a promising class of materials for use in the conversion of solar energy to electricity. Most studies create the CP nanocomposite, measure its photovoltaic (PV) properties and then attempt to ascertain the relationship between the PV activity and morphology based on the observed morphological features. There exists no a priori control of the morphology. The proposed research program is designed to supply thermodynamic information that will provide methods to control the formation of resultant CP:fullerene morphologies based on known surface and/or interfacial energies, and polymer:fullerene, polymer:solvent, and fullerene:solvent interactions. This knowledge will then be used to tune the interactions in the system to fabricate active layers with targeted structures. Correlation of PV activity to the fully characterized targeted morphology represents a paradigm shift in how the nanoscale morphology and photovoltaic activity are optimized in organic photovoltaics. Neutron scattering and reflectivity will be the primary tools in this project, as the large difference in neutron scattering length density between protonated polymers and fullerenes singularly allows the efficient and thorough characterization of the assembly, interfacial structure, morphology, and composition of polymer:fullerene systems. Moreover, the experiments are designed such that the experimental techniques, analyses, and interpretations will be applicable to polymer nanocomposites regardless of polymer structure and nanoparticle size, shape or constitution. Therefore, the completion of this research program will provide methods to develop an understanding of the fundamental thermodynamics and physics that govern the formation and structure of a broad range of polymer nanocomposites.NON-TECHNICAL SUMMARY: The direct conversion of solar energy to electricity is a promising method to solve the grand challenges facing the energy needs of the US and the world at large, as only solar energy can deliver the required power in an environmentally clean (i.e., zero carbon emission) process. However, the conversion of solar energy is currently 5-10 times more expensive than other commonly used energy sources. Major innovations made possible through fundamental, transformative research will be required to improve the efficiency of solar energy conversion and reduce its cost. The proposed research program is designed to meet this need, as its completion will provide critical fundamental information that is needed to rationally design and produce the next generation of more efficient and cost-effective photovoltaic cells. Additionally, broader impacts of this work will come from the experience of public High School students when they spend a summer in a university research lab contributing to this project obtaining hands-on laboratory experience and exceptional preparation for college. Further impact will result from the completion of experiments at the neutron facilities at ORNL and NIST where the students participating in this project will acquire hands-on experience in a multi-user facility to insure the continued health of these National facilities. This project will also further develop the sustainable research infrastructure in Tennessee, an EPSCOR state, and will be implemented to ensure the participation of underrepresented groups in this research.
技术摘要:在这项研究计划中,中子散射将用于确定共轭聚合物:富勒烯薄膜混合物作为聚合物和富勒烯结构,热处理,表面结构和溶剂的函数的可溶解性,相图,相分离结构,界面特性和垂直相分离。共轭聚合物(CP)被选为本研究的重点,因为它们是一类很有前途的材料,用于太阳能转化为电能。大多数研究创建CP纳米复合材料,测量其光伏(PV)性能,然后试图根据观察到的形态特征来确定PV活性和形态之间的关系。 不存在对形态的先验控制。拟议的研究计划的目的是提供热力学信息,将提供方法来控制形成所得的CP:富勒烯形态的基础上已知的表面和/或界面能,和聚合物:富勒烯,聚合物:溶剂,和富勒烯:溶剂的相互作用。然后,这些知识将用于调整系统中的相互作用,以制造具有目标结构的有源层。 PV活性与完全表征的目标形态的相关性代表了在有机光致发光中如何优化纳米级形态和光伏活性的范式转变。中子散射和反射率将是该项目的主要工具,因为质子化聚合物和富勒烯之间的中子散射长度密度的巨大差异奇异地允许聚合物:富勒烯系统的组装,界面结构,形态和组成的有效和彻底的表征。此外,实验的设计,使实验技术,分析和解释将适用于聚合物纳米复合材料,无论聚合物结构和纳米颗粒的大小,形状或构成。因此,该研究计划的完成将提供方法来了解控制广泛聚合物纳米复合材料的形成和结构的基本热力学和物理学。非技术摘要: 太阳能直接转换为电力是解决美国和整个世界的能源需求所面临的巨大挑战的有前途的方法,因为只有太阳能可以以环境清洁(即,零碳排放)过程。然而,目前太阳能的转换比其他常用能源贵5-10倍。需要通过基础性、变革性研究实现重大创新,以提高太阳能转换效率并降低成本。拟议的研究计划旨在满足这一需求,因为它的完成将提供合理设计和生产下一代更高效和更具成本效益的光伏电池所需的关键基础信息。 此外,这项工作的更广泛的影响将来自公立高中学生的经验,当他们在大学研究实验室度过一个夏天,为这个项目做出贡献,获得动手实验室经验和大学的特殊准备。在ORNL和NIST的中子设施完成实验将产生进一步的影响,参加该项目的学生将在多用户设施中获得实践经验,以确保这些国家设施的持续健康。该项目还将进一步发展EPSCOR州田纳西州的可持续研究基础设施,并将实施以确保代表性不足的群体参与这项研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Dadmun其他文献
Mechanism of quiescent nanoplastic formation from semicrystalline polymers
半结晶聚合物形成静态纳米塑料的机制
- DOI:
10.1038/s41467-025-58233-3 - 发表时间:
2025-03-28 - 期刊:
- 影响因子:15.700
- 作者:
Nicholas F. Mendez;Vivek Sharma;Michele Valsecchi;Vighnesh Pai;Johnny K. Lee;Linda S. Schadler;Alejandro J. Müller;Shelby Watson-Sanders;Mark Dadmun;Guruswamy Kumaraswamy;Sanat K. Kumar - 通讯作者:
Sanat K. Kumar
Molecular design of effective compatibilizers of a crystalline polymer Blend
结晶聚合物共混物的有效增容剂的分子设计
- DOI:
10.1016/j.polymer.2025.128385 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:4.500
- 作者:
Bailey Eberle;Timothy Taylor;Mark Dadmun - 通讯作者:
Mark Dadmun
Incognito forms of polyethylene small micro and nanoplastics in solvents: Changes in molecular vibrations
溶剂中聚乙烯小微和纳米塑料的隐身形式:分子振动的变化
- DOI:
10.1016/j.scitotenv.2025.178923 - 发表时间:
2025-03-10 - 期刊:
- 影响因子:8.000
- 作者:
Julie R. Peller;Noah Durlam;Yanni Flaherty;Abbie Valicevic;Christina M. Davis;Shelby Watson;Julien E. Tournebise;Juan A. Medina-Garcia;Mark Dadmun;Stephen P. Mezyk - 通讯作者:
Stephen P. Mezyk
Mark Dadmun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Dadmun', 18)}}的其他基金
CAS: Molecular Engineering of Efficient Compatibilizers in Polymer Recycling
CAS:聚合物回收中高效增容剂的分子工程
- 批准号:
2104982 - 财政年份:2021
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Cultivating Conjugated Polymers as Novel Light Responsive Materials
培育共轭聚合物作为新型光响应材料
- 批准号:
1808946 - 财政年份:2018
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Developing the Foundation for Novel Light-Responsive Materials: Tuning Physical Properties of Conjugated Polymer Systems by Illumination
开发新型光响应材料的基础:通过照明调节共轭聚合物系统的物理性能
- 批准号:
1409034 - 财政年份:2014
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Rational Design and Synthesis of Targeted Nanostructures in Organic Photovoltaics
有机光伏中目标纳米结构的合理设计与合成
- 批准号:
0932666 - 财政年份:2009
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Enhancing Functional and Structural Properties of Polymer Nanocomposites by Controlling Dispersion and Interfaces
通过控制分散和界面增强聚合物纳米复合材料的功能和结构性能
- 批准号:
0706323 - 财政年份:2007
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Multiply Bound Polymer Chains: Novel Chemistry for Improved Interfacial Properties
多重键合聚合物链:改善界面性能的新型化学
- 批准号:
0304807 - 财政年份:2003
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
Impact of Specific Counterion Binding on Surfactant Aggregates and Polyelectrolytes: Beyond Electrostatic Screening Effects
特定抗衡离子结合对表面活性剂聚集体和聚电解质的影响:超越静电屏蔽效应
- 批准号:
0316132 - 财政年份:2003
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
Optimization of Interactions and Dispersions in Multi-Component Polymer Systems: Blends and Nanocomposites
多组分聚合物体系中相互作用和分散的优化:共混物和纳米复合材料
- 批准号:
0241214 - 财政年份:2003
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Acquisition of Chromatography Equipment for Polymeric Materials Research and Education
购置色谱设备用于高分子材料研究和教育
- 批准号:
0216816 - 财政年份:2002
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
CAREER: A Systematic Study of Miscible and Immiscible Polymer Blends Containing a Liquid Crystalline Polymer
职业:含有液晶聚合物的混溶和不混溶聚合物共混物的系统研究
- 批准号:
9702313 - 财政年份:1997
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
相似国自然基金
基于新型co-Neutron-Encoding技术对蛋白质精氨酸二甲基化修饰进行质谱精准鉴定研究
- 批准号:21675006
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
- 批准号:
23K17937 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Clarification of hydrogen embrittlement in steel based on visualization of hydrogen using magnetic small-angle neutron scattering
基于磁小角中子散射氢可视化澄清钢中的氢脆
- 批准号:
23H01733 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
- 批准号:
23KK0051 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Advancing quantum magnetism using neutron scattering technique
利用中子散射技术推进量子磁性
- 批准号:
22H00101 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of a compact small angle neutron scattering instrument using neutron focusing mirror and progress of the focusing technique
紧凑型中子聚焦镜小角中子散射仪研制及聚焦技术进展
- 批准号:
22H02006 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of non-equilibrium structures of poly(ionic liquid)s materials using small angle neutron scattering
小角中子散射分析聚离子液体材料的非平衡结构
- 批准号:
20KK0325 - 财政年份:2021
- 资助金额:
$ 34.2万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Visualization of ion flows on bulk and solid-solid interfacial in all-solid-state batteries using operando neutron scattering
使用操作中子散射可视化全固态电池中块体和固-固界面上的离子流
- 批准号:
19H02457 - 财政年份:2019
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Thermal-tomography using neutron transmission imaging with thermal diffuse scattering analysis
使用中子透射成像和热漫散射分析进行热层析成像
- 批准号:
19K12641 - 财政年份:2019
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interrogating the dynamics of conjugated polymers using neutron scattering & molecular dynamics
使用中子散射研究共轭聚合物的动力学
- 批准号:
2123256 - 财政年份:2018
- 资助金额:
$ 34.2万 - 项目类别:
Studentship
Development of vitrification technique based on structural analysis using neutron scattering
基于中子散射结构分析的玻璃化技术的发展
- 批准号:
18H01921 - 财政年份:2018
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)