Propagation of Waves in Complex Media, and Analysis of Small Noises

波在复杂介质中的传播和小噪声分析

基本信息

项目摘要

The investigators develop a mathematical approach for studying optical processes in networks of thin fibers (waveguides) and mathematical models describing optical waveguides on a silicon wafer (so-called leaking wires). The problem is described by the Helmholtz equation in web-like three-dimensional geometric structures with the thickness parameter going to zero. The investigators also extend these results to more profound mathematical models involving Maxwell equations. The problem does not have an explicit solution. A numerical solution, difficult to obtain due to a complicated structure of the domain and coefficients of the equations, would not allow determination of parameters that are needed for applications. Therefore, the asymptotic analysis is applied. The original three-dimensional problem is reduced to a much simpler one-dimensional problem on the limiting graph. The latter problem admits a detailed analysis. Periodic networks are very often used in applications. These periodic structures have some technological errors due to the nano-scale of the device. The investigators study the wave problem in periodic media with small random noise. One of the outputs of this study is an estimate of the stochastic stability of optical systems (i.e., an estimate of admissible values of the random errors).The motivation and practical applications of the project concern the mathematical background for creating a compact (nano-optical scale) and efficient optical delay device which can be used to synchronize very fast optical communication lines with much slower electronics. The analysis of the limiting one-dimensional problem obtained at the first stage of the investigation suggests a network which can be used to create such a device.
研究人员开发了一种数学方法来研究细光纤(波导)网络中的光学过程,以及描述硅晶片(所谓的漏线)上的光波导的数学模型。用厚度参数趋近于零的类网状三维几何结构的亥姆霍兹方程描述了这一问题。研究人员还将这些结果扩展到涉及麦克斯韦方程的更深刻的数学模型中。这个问题没有明确的解决办法。由于方程的域和系数结构复杂,难以获得数值解,因此无法确定应用所需的参数。因此,应用渐近分析。原来的三维问题在极限图上被简化为一个简单得多的一维问题。后一个问题需要详细分析。周期性网络在应用中非常常用。由于器件的纳米尺度,这些周期结构存在一定的工艺误差。研究了具有小随机噪声的周期性介质中的波动问题。本研究的输出之一是光学系统随机稳定性的估计(即随机误差容许值的估计)。该项目的动机和实际应用涉及创建紧凑(纳米光学尺度)和高效的光延迟设备的数学背景,该设备可用于同步非常快的光通信线路与慢得多的电子设备。在调查的第一阶段得到的限制一维问题的分析,建议一个网络,可以用来创建这样一个装置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stanislav Molchanov其他文献

On the negative spectrum of the hierarchical Schrödinger operator
分级薛定谔算子的负谱
  • DOI:
    10.1016/j.jfa.2012.08.019
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Stanislav Molchanov;B. Vainberg
  • 通讯作者:
    B. Vainberg
Spectral Analysis of Lattice Schr"{o}dinger-Type Operators Associated with the Nonstationary Anderson Model and Intermittency
与非平稳Anderson模型和间歇性相关的格子Schr"{o}dinger型算子的谱分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Han;Stanislav Molchanov;B. Vainberg
  • 通讯作者:
    B. Vainberg
Hierarchical Schrödinger Operators with Singular Potentials
Localization at large disorder and at extreme energies: An elementary derivations
  • DOI:
    10.1007/bf02099760
  • 发表时间:
    1993-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Stanislav Molchanov
  • 通讯作者:
    Stanislav Molchanov
The index and shift inequalities and their properties
  • DOI:
    10.1007/s10479-025-06726-1
  • 发表时间:
    2025-07-30
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Alexander Gordon;Stanislav Molchanov;Isaac M. Sonin
  • 通讯作者:
    Isaac M. Sonin

Stanislav Molchanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stanislav Molchanov', 18)}}的其他基金

Applied Spectral Analysis in Population Dynamics, Biophysics, and Physical Chemistry
群体动力学、生物物理学和物理化学中的应用光谱分析
  • 批准号:
    1714402
  • 财政年份:
    2017
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Asymptotic and Spectral Analysis of Applied Non-self-adjoint Problems
应用非自伴问题的渐近和谱分析
  • 批准号:
    1410547
  • 财政年份:
    2014
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Wave Propagation and Scattering in Networks of Thin Waveguides
薄波导网络中的波传播和散射
  • 批准号:
    0706928
  • 财政年份:
    2007
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Wave Propagation and Scattering for Periodic and Randomly Perturbed Periodic Media.
周期性和随机扰动周期性介质的波传播和散射。
  • 批准号:
    0405927
  • 财政年份:
    2004
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Multiscattering and Absolutely Continuous Spectrum
多重散射和绝对连续光谱
  • 批准号:
    9971592
  • 财政年份:
    1999
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Wave and Heat Processes in Fractal Boundary Layers".
数学科学:“分形边界层中的波和热过程”。
  • 批准号:
    9623727
  • 财政年份:
    1996
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Theory of Random Media
数学科学:随机介质理论
  • 批准号:
    9310710
  • 财政年份:
    1993
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Verification of broadband control of complex transmittance matrix for electromagnetic waves using Brewster metafilms
使用布鲁斯特超薄膜验证电磁波复杂透射矩阵的宽带控制
  • 批准号:
    21K04192
  • 财政年份:
    2021
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of Orbital Angular Momentum (OAM) Waves with Respect to Wireless Communication in Complex Environments and to Electromagnetic Interference
轨道角动量 (OAM) 波对于复杂环境中无线通信和电磁干扰的特性
  • 批准号:
    432301241
  • 财政年份:
    2020
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grants
R-matrices and integrability: from non-smooth, nonlinear waves to complex geometry
R 矩阵和可积性:从非光滑、非线性波到复杂几何
  • 批准号:
    527701-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 19.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Modelling, computation and analysis of droplets guided by Faraday waves: a complex system with macroscopic quantum analogies.
法拉第波引导的液滴的建模、计算和分析:具有宏观量子类比的复杂系统。
  • 批准号:
    EP/N018176/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Modelling, computation and analysis of droplets guided by Faraday waves: a complex system with macroscopic quantum analogies.
法拉第波引导的液滴的建模、计算和分析:具有宏观量子类比的复杂系统。
  • 批准号:
    EP/N018559/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Rapid Inspection of Complex Geometries Using Edge-Guided Ultrasonic Waves
使用边缘引导超声波快速检查复杂的几何形状
  • 批准号:
    EP/M027724/1
  • 财政年份:
    2015
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Research Grant
Complex light and matter waves: merging nano-optics, quantum physics, and field theory
复杂的光波和物质波:融合纳米光学、量子物理学和场论
  • 批准号:
    FT140101126
  • 财政年份:
    2015
  • 资助金额:
    $ 19.75万
  • 项目类别:
    ARC Future Fellowships
Waves in Complex Media and Applications
复杂媒体和应用中的波浪
  • 批准号:
    1412560
  • 财政年份:
    2014
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Multi-Dimensional Stress Quantification at Complex Loaded Structural Components with Nonlinear Rayleigh Waves
使用非线性瑞利波对复杂负载结构部件进行多维应力量化
  • 批准号:
    1335526
  • 财政年份:
    2013
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Waves in complex mesoscopic materials
复杂介观材料中的波
  • 批准号:
    9037-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了