Frontiers of Tractability for Graph Isomorphism and Homomorphism Problems
图同构和同态问题的可处理性前沿
基本信息
- 批准号:197227691
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our overall objective is an extension of the current frontiers oftractability for isomorphism and homomorphism (i.e., constraint satisfaction)problems on graphs. Though in general the two classes of problems occupydifferent levels of the complexity hierarchy, we focus on methodsallowing to treat them from a common perspective. These methods are basedon definability of input graphs in a finite-variable first-orderlogic and its existential-positive fragment.The definability of graphs in k-variable logic with logarithmic quantifier depth impliesthat isomorphism of such graphs is decidable in NC by a naturalparallelized version of the k-dimensional Weisfeiler-Lehman algorithm.This holds true even if the syntax is extended with counting quantifiers.Sometimes the NC result can further be improved to a logspace algorithm,that does not rely explicitly on the original descriptive complexityanalysis. Using this approach, we intend to obtain new tractabilityresults for several important classes of graphs. The expressibility in k-variable existential-positive logic corresponds to the algorithmic techniques for homomorphism testing known in the constraint satisfaction research as k-Consistency Checking.Here we expect that a thorough analysis of descriptive complexitywill allow us to obtain new algorithmic results as well asto establish lower bounds for the efficiency of k-Consistency Checking.The cases of k=2,3 correspond to Arc and Path Consistency, which areprincipal tools for solving constraint satisfaction problems ofbounded width. For constraint satisfaction problems ofunbounded width we study the optimum value of the parameter kas a function of the input size and put consistency checkingin the context of research on exact exponential algorithms.We also plan to investigate locally bijective homomorphisms(or covering maps) in the context of their applications tovarious models of local and distributed computations.
我们的总体目标是扩展同构和同态的当前前沿易处理性(即,约束满足)问题。虽然在一般情况下,这两类问题占据不同层次的复杂性层次结构,我们专注于方法,从一个共同的角度来对待他们。这些方法是基于有限变量一阶逻辑中输入图的可定义性及其存在正片段.具有对数量词深度的k-变量逻辑中图的可定义性意味着这类图的同构在NC中可由k维Weisfeiler的自然并行版本判定. Lehman算法。即使语法扩展了计数量词,也是如此。有时NC结果可以进一步改进为对数空间算法,这并不依赖于原始的描述性复杂性分析。使用这种方法,我们打算获得新的tractability结果的几个重要类的图。k-变量存在正逻辑中的可表达性对应于约束满足研究中的同态检验算法技术,即k-一致性检验。本文期望通过对描述复杂性的深入分析,获得新的算法结果,并建立k-一致性检验效率的下界。k= 2,3的情况对应于弧和路径一致性,是求解有界宽度约束满足问题的主要工具。对于无界宽度的约束满足问题,我们研究了参数kas作为输入大小的函数的最优值,并在精确指数算法的研究中进行了一致性检验,我们还计划研究局部双射同态(或覆盖映射)在各种局部和分布式计算模型中的应用.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bounds for the Quantifier Depth in Finite-Variable Logics
有限变量逻辑中量词深度的界限
- DOI:10.1145/2732409
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:C. Berkholz;A. Krebs;O. Verbitsky
- 通讯作者:O. Verbitsky
On the Power of Color Refinement
论色彩细化的力量
- DOI:10.1007/978-3-319-22177-9_26
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:V. Arvind;J. Köbler;G. Rattan;O. Verbitsky
- 通讯作者:O. Verbitsky
Universal Covers, Color Refinement, and Two-Variable Counting Logic: Lower Bounds for the Depth
通用覆盖、颜色细化和二变量计数逻辑:深度的下界
- DOI:10.1109/lics.2015.69
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:A. Krebs;O. Verbitsky
- 通讯作者:O. Verbitsky
On Tinhofer's Linear Programming Approach to Isomorphism Testing
关于 Tinhofer 的同构测试线性规划方法
- DOI:10.1007/978-3-662-48054-0_3
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:V. Arvind;J. Köbler;G. Rattan;O. Verbitsky
- 通讯作者:O. Verbitsky
Circular-arc hypergraphs: Rigidity via connectedness
圆弧超图:通过连通性实现刚性
- DOI:10.1016/j.dam.2016.08.008
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:J. K¨bler;S. Kuhnert;O. Verbitsky
- 通讯作者:O. Verbitsky
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Oleg Verbitsky其他文献
Dr. Oleg Verbitsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Addressing genetic tractability and species-specific infection biology in Chlamydia pneumoniae
解决肺炎衣原体的遗传易处理性和物种特异性感染生物学
- 批准号:
10571366 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Inference in High-Dimensional Statistical Models: Algorithmic Tractability and Computational Barriers
高维统计模型中的推理:算法易处理性和计算障碍
- 批准号:
2015517 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidating the therapeutic tractability and functional role of SHP2 in ALK-driven high-risk neuroblastoma
阐明 SHP2 在 ALK 驱动的高危神经母细胞瘤中的治疗易处理性和功能作用
- 批准号:
10251917 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Sulfonium salts as pseudohalide electrophiles for cross-coupling having improved tractability, orthogonality, stability and environmental profile
锍盐作为用于交叉偶联的拟卤化物亲电子试剂,具有改进的易处理性、正交性、稳定性和环境特征
- 批准号:
2435222 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Elucidating the therapeutic tractability and functional role of SHP2 in ALK-driven high-risk neuroblastoma
阐明 SHP2 在 ALK 驱动的高危神经母细胞瘤中的治疗易处理性和功能作用
- 批准号:
10470279 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual