NSWP: Causal Electron Precipitation in Geospace Weather: Model Development, Validation, Event Studies

NSWP:地球空间天气中的因果电子降水:模型开发、验证、事件研究

基本信息

  • 批准号:
    1023346
  • 负责人:
  • 金额:
    $ 30.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

This project is motivated by the overarching question: How does spatiotemporal variability in regional and global characteristics of electron precipitation influence the magnetosphere-ionosphere (MI) interaction? The precipitation of electrons from the magnetosphere into the ionosphere alters the electrical properties of the ionosphere. By altering the electrical conductance of the ionosphere as well as the scale height, electron precipitation plays a primary agent in regulating both the electrodynamics of magnetosphere-ionosphere coupling, but also the gravitational escape of ionospheric ions into space. For these reasons, characteristics of electron precipitation such as its flux distributions and its hemispheric power are recognized as key variables for space weather prediction. Current understanding of the effects of electron precipitation has been derived largely from index-based, non-causal empirical precipitation models and from simple first-principles models embedded in global simulations of the magnetosphere. Neither approach adequately captures the complexity or variability of electron precipitation that occurs during major space weather events such as magnetic storms. This project takes a major step in advancing the state-of-the-art by developing physically realistic electron precipitation models that can be causally regulated by state variables derived from global magnetohydrodynamic (MHD) simulations of the magnetosphere. The principal science objectives are i) to improve the fidelity of the electron precipitation fluxes predicted in numerical simulations of the geospace environment, and ii) to use the simulations to investigate the effects of electron precipitation on the MI interaction. Anticipated innovations include improvements in the specification of direct-entry, diffuse and monoenergetic precipitation and development of new models for secondary and broadband precipitation. The proposed developments will be will be tested and their accuracy calibrated in the context of a standalone version of the Lyon-Fedder-Mobarry (LFM) global simulation model as well as the coupled magnetosphere- ionosphere-thermosphere (CMIT) model, which merges the LFM model and the thermosphere-ionosphere electrodynamics general circulation model (TIEGCM). The LFM model will be used to study precipitation, field-aligned currents, convection, and joule dissipation; the TIEGCM will be used to study the impacts of precipitation on the distribution and dynamics of E- and F-region ionization and the resulting electrical conductivities. The project integrates research and education by advancing discovery and understanding while promoting the teaching and professional development of a PhD student who will perform the bulk of the research under the mentorship of the principal investigator and his collaborators. The project will enhance the infrastructure for research and education by fostering a partnership between participating scientists at Dartmouth College and the National Center for Atmospheric Research. Project results will be disseminated in public forums, in refereed journal publications and in conference presentations. Legacies include innovative precipitation models that can be implemented in any global MHD simulation model of the magnetosphere; benefit to society by advancing our capability to forecast geospace weather; and a deeper scientific understanding of causal relationships between the physical attributes and the impacts of electron precipitation in geospace.
该项目的动机是一个重要问题:电子降水的区域和全球特征的时空变异性如何影响磁层-电离层(MI)相互作用?电子从磁层向电离层的沉淀改变了电离层的电学性质。通过改变电离层的电导和尺度高度,电子沉淀在调节磁层-电离层耦合的电动力学以及电离层离子向空间的引力逃逸方面发挥了主要作用。因此,电子降水的通量分布和半球功率等特征被认为是空间天气预报的关键变量。目前对电子沉淀影响的了解主要来自基于指数的非因果经验降水模型和嵌入磁层全球模拟的简单第一原理模型。这两种方法都没有充分捕捉到在磁暴等重大空间天气事件期间发生的电子沉淀的复杂性或可变性。该项目在推动最先进技术方面迈出了重要的一步,开发了物理上真实的电子沉淀模型,该模型可以由来自磁层的全球磁流体动力学(MHD)模拟的状态变量进行因果调节。主要的科学目标是:i)提高在地球空间环境的数值模拟中预测的电子降水通量的保真度,以及ii)利用模拟来研究电子降水对MI相互作用的影响。预期的创新包括改进直接入射、扩散和单能降水的规范,以及开发新的二次和宽带降水模式。将在Lyon-Fedder-Mobarry(LFM)全球模拟模型的独立版本以及合并LFM模型和热层-电离层-热层电动力学一般环流模型(TIEGCM)的磁层-电离层-热层耦合模型(CMIT)的背景下测试拟议的开发并校准其准确性。LFM模型将用于研究降水、场向电流、对流和焦耳耗散;TIEGCM将用于研究降水对E区和F区电离的分布和动力学以及由此产生的电导率的影响。该项目通过促进发现和理解,将研究和教育结合起来,同时促进一名博士生的教学和专业发展,该博士生将在首席研究员及其合作者的指导下进行大部分研究。该项目将通过促进达特茅斯学院的参与科学家和国家大气研究中心之间的伙伴关系来加强研究和教育的基础设施。项目成果将在公共论坛、经评审的期刊出版物和会议报告中传播。遗产包括:可在任何全球磁层磁流体力学模拟模型中实施的创新的降水模式;通过提高我们预报地球空间天气的能力而造福社会;对物理属性和地球空间电子降水影响之间因果关系的更深入的科学理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Lotko其他文献

William Lotko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Lotko', 18)}}的其他基金

Collaborative Research: Impacts of Ion-Neutral Coupling on Ion Upflow and Outflow in the Polar Cusp
合作研究:离子中性耦合对极尖点离子上流和流出的影响
  • 批准号:
    1739188
  • 财政年份:
    2016
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
GEM Postdoc: Magnetosphere-Ionosphere Coupling Aspects of Traveling Convection Vortices
GEM 博士后:行进对流涡旋的磁层-电离层耦合方面
  • 批准号:
    0228383
  • 财政年份:
    2002
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
GEM: Low-Latitude Boundary Layer Model - Structure, Signatures and Mappings
GEM:低纬度边界层模型 - 结构、特征和映射
  • 批准号:
    9112418
  • 财政年份:
    1991
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
High Latitude Electric Fields and Plasma Turbulence
高纬度电场和等离子体湍流
  • 批准号:
    8619019
  • 财政年份:
    1987
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant

相似海外基金

Causal contributions of deep prefrontal-amygdala circuits to social cognition
深层前额叶杏仁核回路对社会认知的因果贡献
  • 批准号:
    MR/Y010477/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Fellowship
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
  • 批准号:
    2340124
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
  • 批准号:
    2337612
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
  • 批准号:
    MR/Z503769/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Research Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Continuing Grant
Causal relationship between taste and smell perception and eating behaviour
味觉和嗅觉与饮食行为之间的因果关系
  • 批准号:
    DE240100014
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Discovery Early Career Researcher Award
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
  • 批准号:
    MR/Y014634/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Research Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
SBIR Phase I: Knowledge Graph-powered Information Retrieval and Causal Inference
SBIR 第一阶段:知识图谱驱动的信息检索和因果推理
  • 批准号:
    2335357
  • 财政年份:
    2024
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了