CAREER: Modeling the effect of operators' adaptive behavior on system safety
职业:模拟操作员自适应行为对系统安全的影响
基本信息
- 批准号:1027609
- 负责人:
- 金额:$ 28.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many technological innovations are designed to increase operator safety by simplifying tasks and user demands in safety-critical situations. However, operators may actually adapt to these systems in unexpected ways that may counteract the intended outcome. In this research, the PI will develop a statistical methodology for predicting operator adaptation to prolonged system use. The test bed application providing the concrete framework for development of the methodology will derive from the driving domain, where a number of safety based systems have already been installed. Driving involves complex interactions between the driver, the vehicle, and the environment, and any breakdowns in these interactions can undermine driving safety. The objective will be achieved through five major components: development of a representative model of operators' adaptive behavior as influenced by technology; quantification of the initiating factors of operator adaptation on system safety by comparing the responses from a field operation test of short term adaptive cruise control (ACC) users with an on-road study of long-term ACC users; acquisition of an understanding how mediating factors and perceptions influence adaptive behavior using surveys distributed to drivers who have used ACC for extended periods; identification of the safety critical situations where adaptive behavior may have negative consequences using a driving simulator study designed to capture collision likely events; and development of a predictive model of adaptation that results from prolonged system use with time-based regression models. The intellectual merit of this project centers on the integration of theory and data to advance our knowledge of adaptive strategies and how that influences system use in unintended ways. The research will extend prior work of the PI and demonstrate why objective and subjective measures are needed to further understand how a person's behavior changes as they interact with intelligent systems. To understand how and why people adapt to information provided by innovative technologies that are continually changing, an understanding of the user's intentions and motivations is needed; the PI plans to fill this gap with time-dependent analyses which have traditionally been limited in human-factors research. Project outcomes will advance our knowledge of the adaptive behavior process, such that those behaviors that counteract the intended benefits of safety systems can be predicted and therefore allow for more robust, effective, and efficient systems to be designed.Broader Impact: Systems that account for the changing strategies of drivers will be more effective in reducing the number of crashes and fatalities in the world. This research will connect the range of applications for analytical techniques used across engineering, econometrics, statistics, and epidemiology. The research activities will be integrated into two graduate courses developed by the PI that focus on designing systems centered on human performance, and analytical methods in human factors engineering, and the PI further plans a variety of outreach activities intended for K-12 students as well as teenage drivers.
许多技术创新旨在通过简化安全关键情况下的任务和用户需求来提高操作员的安全性。 然而,操作员实际上可能会以意想不到的方式适应这些系统,这可能会抵消预期的结果。 在这项研究中,PI 将开发一种统计方法来预测操作员对长期系统使用的适应情况。 为该方法的开发提供具体框架的测试台应用程序将源自驾驶领域,其中已经安装了许多基于安全的系统。 驾驶涉及驾驶员、车辆和环境之间复杂的交互,这些交互中的任何故障都会损害驾驶安全。 该目标将通过五个主要组成部分来实现:开发受技术影响的操作员自适应行为的代表性模型;通过将短期自适应巡航控制(ACC)用户的现场操作测试的响应与长期 ACC 用户的道路研究的响应进行比较,量化操作员适应系统安全的启动因素;通过向长期使用 ACC 的驾驶员进行调查,了解中介因素和感知如何影响适应性行为;使用旨在捕获可能发生碰撞的事件的驾驶模拟器研究来识别自适应行为可能产生负面后果的安全关键情况;开发适应预测模型,该模型是由于系统长时间使用基于时间的回归模型而产生的。 该项目的智力价值集中在理论和数据的整合上,以增进我们对自适应策略及其如何以意想不到的方式影响系统使用的了解。 该研究将扩展 PI 之前的工作,并证明为什么需要客观和主观测量来进一步了解一个人在与智能系统交互时的行为如何变化。 为了了解人们如何以及为何适应不断变化的创新技术所提供的信息,需要了解用户的意图和动机; PI 计划通过依赖时间的分析来填补这一空白,而这种分析传统上仅限于人为因素研究。 项目成果将增进我们对适应性行为过程的了解,从而可以预测那些抵消安全系统预期效益的行为,从而设计出更稳健、更有效、更高效的系统。 更广泛的影响:考虑到驾驶员策略变化的系统将更有效地减少世界上的撞车和死亡人数。 这项研究将连接工程、计量经济学、统计学和流行病学中使用的分析技术的应用范围。 研究活动将被纳入 PI 开发的两门研究生课程中,重点是设计以人类表现为中心的系统和人因工程学的分析方法,并且 PI 进一步计划了针对 K-12 学生和青少年司机的各种外展活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Boyle其他文献
Linda Boyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Boyle', 18)}}的其他基金
Travel Support to 2023 Automotive User Interface (AutoUI) Doctoral Colloquium; Ingolstadt, Germany; 18-21 September 2023
为 2023 年汽车用户界面 (AutoUI) 博士座谈会提供差旅支持;
- 批准号:
2335874 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Augmented reality for control of reservation-based intersections with mixed flows
CPS:中:协作研究:用于控制混合流量的基于预留的交叉口的增强现实
- 批准号:
1739085 - 财政年份:2018
- 资助金额:
$ 28.66万 - 项目类别:
Continuing Grant
FW-HTF: Collaborative Research: The Next Mobile Office: Safe and Productive Work in Automated Vehicles
FW-HTF:协作研究:下一个移动办公室:自动驾驶汽车中安全高效的工作
- 批准号:
1839666 - 财政年份:2018
- 资助金额:
$ 28.66万 - 项目类别:
Standard Grant
CAREER: Modeling the effect of operators' adaptive behavior on system safety
职业:模拟操作员自适应行为对系统安全的影响
- 批准号:
0643390 - 财政年份:2007
- 资助金额:
$ 28.66万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Longitudinal Modeling of Pro-Inflammatory Cytokines, Hazardous Alcohol Use, and Cerebral Metabolites as Predictors of Neurocognitive Change in People with HIV
促炎细胞因子、有害酒精使用和脑代谢物的纵向建模作为 HIV 感染者神经认知变化的预测因子
- 批准号:
10838849 - 财政年份:2024
- 资助金额:
$ 28.66万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Modeling the Responsiveness of Sensitive Populations to Genotoxic Agents Using DNA Repair Inhibitors
使用 DNA 修复抑制剂模拟敏感人群对基因毒性药物的反应性
- 批准号:
10734425 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
- 批准号:
10678562 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
PBPK Modeling & Simulation to Predict Transporter-Mediated Drug Secretion into Human Breast Milk
PBPK 建模
- 批准号:
10706040 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10940417 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Modeling Alzheimer's Disease in Hispanic Latino populations using human cortical organoids
使用人类皮质类器官模拟西班牙裔拉丁裔人群的阿尔茨海默病
- 批准号:
10680168 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10675944 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Rational PROTAC design enabled by integrated in silico molecular modeling and in vitro biomimetic affinity assessment
通过集成计算机分子建模和体外仿生亲和力评估实现合理的 PROTAC 设计
- 批准号:
10728205 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别: