Collaborative Research: Identifying Structure in Social Data Models using Markov Chain Monte Carlo Algorithms

协作研究:使用马尔可夫链蒙特卡罗算法识别社会数据模型中的结构

基本信息

  • 批准号:
    1028314
  • 负责人:
  • 金额:
    $ 16.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The analysis of social science data is often difficult for reasons that tend to affect other fields less substantially. One problem that is particularly difficult to handle with traditional statistical models is deliberately withheld information that correlates strongly with phenomena of interest. Such information can be thought of as unobserved clustering in the data. This project will substantially improve the current state of model-based clustering algorithms using Generalized Linear Mixed Dirichlet Models (GLMDM). The investigators' key objectives are to: (1) better understand unobserved clustering effects that are pervasive in social science datasets, notably with empirical studies of terrorism; (2) adapt GLMDM algorithms to provide substantive clusters of interest through posterior probabilities using covariate information; (3) develop an algorithmic approach that directly includes variable selection within clusters into a general clustering model; (4) speed up the simultaneous clustering and variable selection process by parallelization; and (5) distribute this technology as an easy-to-use R package for general use by others.This project will establish a new approach for using Bayesian nonparametric methods to produce clustering based on posterior probabilities. The development of nonparametric clustering algorithms is expected to substantially improve the current state of data clustering. The algorithmic developments, which will be disseminated widely, can be applied in any scientific field and will contribute to the statistical literature on Markov chain Monte Carlo. This new approach will be applied to the empirical study of terrorism. The project also will aid in the intellectual development of students and a post-doctorate researcher who will benefit from the project's interdisciplinary focus.
社会科学数据的分析往往因为对其他领域影响不大的原因而变得困难。传统统计模型特别难以处理的一个问题是故意隐瞒与感兴趣的现象密切相关的信息。这些信息可以被认为是数据中未观察到的聚类。该项目将使用广义线性混合狄利克雷模型(GLMDM)大幅改进基于模型的聚类算法的现状。研究者的主要目标是:(1)更好地理解在社会科学数据集中普遍存在的未观察到的聚类效应,特别是在恐怖主义的实证研究中;(2)采用GLMDM算法,利用协变量信息通过后验概率提供大量感兴趣的聚类;(3)开发一种算法方法,直接将聚类中的变量选择纳入一般聚类模型;(4)通过并行化加快同时聚类和变量选择过程;(5)将该技术作为易于使用的R包分发给其他人。本项目将建立一种使用贝叶斯非参数方法产生基于后验概率的聚类的新方法。非参数聚类算法的发展有望大大改善数据聚类的现状。算法的发展将得到广泛传播,可应用于任何科学领域,并将有助于马尔可夫链蒙特卡洛的统计文献。这种新方法将应用于对恐怖主义的实证研究。该项目还将有助于学生和博士后研究人员的智力发展,他们将从项目的跨学科重点中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeff Gill其他文献

MP24-12 MULTILEVEL PREDICTORS OF BPH MEDICATION INITIATION IN PRIMARY CARE AND UROLOGY
  • DOI:
    10.1016/j.juro.2015.02.1154
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Seth A. Strope;Adriennne Kuxhausen;Joel Vetter;Jeff Gill
  • 通讯作者:
    Jeff Gill
Clinicopathologic and molecular analysis of high-grade dysplasia and early adenocarcinoma in short- versus long-segment Barrett esophagus.
短节段与长节段 Barrett 食管的高度不典型增生和早期腺癌的临床病理学和分子分析。
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Bunsei Nobukawa;Susan C. Abraham;Jeff Gill;R. F. Heitmiller;T. Wu
  • 通讯作者:
    T. Wu
Rejoinder to the discussion of “Sampling schemes for generalized linear Dirichlet process random effects models”
  • DOI:
    10.1007/s10260-011-0179-7
  • 发表时间:
    2011-11-04
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Minjung Kyung;Jeff Gill;George Casella
  • 通讯作者:
    George Casella
Bridging prediction and theory: Introducing the Bayesian Partially-Protected Lasso
桥接预测和理论:贝叶斯部分保护套索简介
  • DOI:
    10.1016/j.electstud.2023.102730
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Selim Yaman;Yasir Atalan;Jeff Gill
  • 通讯作者:
    Jeff Gill
Still Underrepresented? Gender Representation of Witnesses at House and Senate Committee Hearings
仍然代表性不足?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collin Coil;Caroline Bruckner;Natalie Williamson;Karen O’Connor;Jeff Gill
  • 通讯作者:
    Jeff Gill

Jeff Gill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeff Gill', 18)}}的其他基金

Collaborative Research: Smooth National Measurement of Public Opinion Across Boundaries and Levels: A View From the Bayesian Spatial Approach
合作研究:跨越边界和层次的全国舆论平滑测量:贝叶斯空间方法的视角
  • 批准号:
    1761582
  • 财政年份:
    2017
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Smooth National Measurement of Public Opinion Across Boundaries and Levels: A View From the Bayesian Spatial Approach
合作研究:跨越边界和层次的全国舆论平滑测量:贝叶斯空间方法的视角
  • 批准号:
    1630263
  • 财政年份:
    2016
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Workshop On Methodological Challenges Across the Social, Behavioral, and Economic Sciences; NSF; Arlington, VA - February, 2015
社会、行为和经济科学方法论挑战研讨会;
  • 批准号:
    1503092
  • 财政年份:
    2015
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Nonparametric Markov Chain Monte Carlo Algorithms for Social Data Models with Nonparametric Priors
协作研究:具有非参数先验的社会数据模型的自适应非参数马尔可夫链蒙特卡罗算法
  • 批准号:
    0753730
  • 财政年份:
    2007
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Nonparametric Markov Chain Monte Carlo Algorithms for Social Data Models with Nonparametric Priors
协作研究:具有非参数先验的社会数据模型的自适应非参数马尔可夫链蒙特卡罗算法
  • 批准号:
    0631632
  • 财政年份:
    2007
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308989
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303108
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308985
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308990
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Supporting the Whole Student: Identifying and Mitigating Barriers to Persistence for Underserved Post-Traditional Engineering Students
合作研究:支持整个学生:识别和减轻服务不足的后传统工程学生的坚持障碍
  • 批准号:
    2321391
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308986
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308987
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308988
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了