Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group
合作研究:李群上哈密顿系统的计算几何不确定性传播
基本信息
- 批准号:1029551
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative research project is concerned with the development of accurate and efficient computational uncertainty propagation techniques for nonlinear stochastic Hamiltonian systems that evolve on Lie group configuration spaces. Uncertainties in a dynamic system arise from multiple sources such as unmodeled dynamics, parametric uncertainty, and uncertainty in initial conditions. As they cannot be completely eliminated from any computational experiment or physical measurement, a careful characterization of the evolution of uncertainties is essential in scientific and engineering problems. This project involves the application of computational geometric mechanics, geometric numerical integration, noncommutative harmonic analysis, and generalized polynomial chaos techniques, and will yield mesh-free, coordinate-free methods for the numerically stable long-time propagation of uncertainty in a Hamiltonian system, while explicitly addressing the underlying stochastic and geometric properties of the system.Most mathematical models have sources of uncertainty that may arise from physical processes that are poorly understood, a lack of precise knowledge of the parameters, or incomplete information about the current state of the system, and it is important to understand how these model uncertainties affect the predictions that arise from the mathematical model. In particular, a computer prediction without some indication of the reliability and confidence in the prediction can be disastrously misleading. This project aims to address the essential task of developing accurate mathematical and numerical methods for characterizing the effects of uncertainty in complex systems, which is a particularly timely and pressing need, since mathematical models of complex systems are increasingly relied upon to inform public policy decisions with long lasting and far reaching consequences. A graduate textbook will be prepared that discusses in parallel the continuous and discrete time approach to geometric mechanics on Lie groups that aims to be accessible to professional programs in computational science, and which will be field tested in the CSME graduate program at UCSD. This textbook includes accompanying code that will facilitate the reuse of the computational infrastructure funded by this project in other applications involving uncertainty propagation on nonlinear spaces.
该合作研究项目致力于为在李群配置空间上演化的非线性随机哈密顿系统开发准确有效的计算不确定性传播技术。 动态系统中的不确定性来自多种来源,例如未建模的动力学、参数不确定性和初始条件的不确定性。 由于它们无法从任何计算实验或物理测量中完全消除,因此仔细表征不确定性的演变对于科学和工程问题至关重要。该项目涉及计算几何力学、几何数值积分、非交换调和分析和广义多项式混沌技术的应用,并将产生用于哈密顿系统中不确定性的数值稳定长期传播的无网格、无坐标方法,同时明确解决系统的潜在随机和几何性质。大多数数学模型都有以下来源: 由于对物理过程了解甚少、缺乏对参数的精确了解或有关系统当前状态的信息不完整,可能会产生不确定性,了解这些模型不确定性如何影响数学模型产生的预测非常重要。特别是,如果计算机预测没有表明预测的可靠性和置信度,则可能会产生灾难性的误导。该项目旨在解决开发准确的数学和数值方法来表征复杂系统中不确定性影响的基本任务,这是一个特别及时和紧迫的需求,因为复杂系统的数学模型越来越依赖于为具有长期和深远影响的公共政策决策提供信息。将编写一本研究生教科书,并行讨论李群几何力学的连续和离散时间方法,旨在供计算科学专业课程使用,并将在加州大学圣地亚哥分校的 CSME 研究生课程中进行现场测试。本教科书包含随附的代码,这些代码将有助于在涉及非线性空间不确定性传播的其他应用中重用该项目资助的计算基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taeyoung Lee其他文献
G-Learning: Equivariant Indirect Optimal Control with Generating Function
- DOI:
10.1109/cdc49753.2023.10384196 - 发表时间:
2023-12 - 期刊:
- 影响因子:0
- 作者:
Taeyoung Lee - 通讯作者:
Taeyoung Lee
Real Harmonic Analysis on the Special Orthogonal Group
特殊正交群的实调和分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1
- 作者:
Taeyoung Lee - 通讯作者:
Taeyoung Lee
Understanding Participatory Hashtag Practices on Instagram: A Case Study of Weekend Hashtag Project
了解 Instagram 上的参与式标签实践:周末标签项目案例研究
- DOI:
10.1145/2851581.2892369 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Changhoon Oh;Taeyoung Lee;Yoojung Kim;Sohyun Park;B. Suh - 通讯作者:
B. Suh
On the improvements of fast user interactivity in consumer electronic devices using Linux
关于使用 Linux 的消费电子设备中快速用户交互性的改进
- DOI:
10.1109/icce-berlin.2017.8210648 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Surngkyo Oh;Cheul;Bongwon Seo;Taeyoung Lee;Jaegil Lee - 通讯作者:
Jaegil Lee
Signaling News Outlet Credibility in a Google Search
在 Google 搜索中表明新闻媒体的可信度
- DOI:
10.1177/10776990211047964 - 发表时间:
2021 - 期刊:
- 影响因子:3.6
- 作者:
Gina M. Masullo;Taeyoung Lee;M. J. Riedl - 通讯作者:
M. J. Riedl
Taeyoung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taeyoung Lee', 18)}}的其他基金
Collaborative Research: Dynamics and Control of Long Range Micro Air Vehicles Inspired by Monarch Butterflies
合作研究:受帝王蝶启发的远程微型飞行器动力学与控制
- 批准号:
1760928 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Stochastic Motion Planning and Estimation with Non-Gaussian Uncertainty Distributions on a Lie Group
李群上非高斯不确定性分布的随机运动规划和估计
- 批准号:
1335008 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group
合作研究:李群上哈密顿系统的计算几何不确定性传播
- 批准号:
1243000 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329758 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
- 批准号:
2345256 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




