Online Optimization for Dynamic Resource Allocation Problems
动态资源分配问题的在线优化
基本信息
- 批准号:1029603
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this project is for the development of general online optimization methodologies and algorithms for addressing resource allocation problems with the following combined characteristics: (i) dynamic input streams with significant uncertainty about their patterns and (ii) requirements for full or partial online decision making. A corresponding class of canonical problems of increasing complexity will be proposed. The mathematical tools for the analysis of these data-driven optimization problems will expand the competitive analysis proposed for online problems, by incorporating, when appropriate, stochastic information about future data and/or limited learning capabilities from past data. The design of the online algorithms will use greedy techniques as well as general principles from primal-dual concepts. It will incorporate probabilistic information when available. The analysis of the algorithms will be based on theoretical competitive analysis, including asymptotic consideration, and on empirical testing within a controlled numerical simulation framework.If successful, the results of this research will help understand how to tackle/solve complex new data-driven problems that have been made possible from continuing developments in telecommunication, computing, and other information technologies. While the basic technologies needed for the development of dynamic online systems are already available, the results of this research would provide algorithms that exploit the dynamic information supplied by these technologies and leverage processes to generate cost effective solutions. In addition we hope that this research will shed lights on the following basic questions: (i) How to quantify the degree of uncertainty in data-driven problems, and its impact on the ability to solve them? (ii) How to quantify the value of additional (deterministic and/or probabilistic) information for solving such problems?
本项目的研究目标是开发解决资源分配问题的一般在线优化方法和算法,这些方法和算法具有以下综合特征:(1)动态输入流,其模式具有重大不确定性;(2)对全部或部分在线决策的要求。将提出相应的一类日益复杂的正则问题。用于分析这些数据驱动的优化问题的数学工具将通过酌情纳入关于未来数据的随机信息和(或)从过去数据中有限的学习能力,扩大为在线问题提出的竞争性分析。在线算法的设计将使用贪婪技术以及原始-对偶概念的一般原理。它将在可用时纳入概率信息。算法的分析将基于理论竞争分析,包括渐近考虑,以及在受控数值模拟框架内的经验测试。如果成功,这项研究的结果将有助于理解如何处理/解决电信、计算和其他信息技术的持续发展带来的复杂的新数据驱动问题。虽然开发动态在线系统所需的基本技术已经可用,但这项研究的结果将提供利用这些技术提供的动态信息并利用过程产生具有成本效益的解决方案的算法。此外,我们希望这项研究将阐明以下基本问题:(I)如何量化数据驱动问题的不确定性程度,以及它对解决这些问题的能力的影响?(2)如何量化附加(确定性和/或概率性)信息对解决这类问题的价值?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Jaillet其他文献
CUBE VERSUS TORUS MODELS AND THE EUCLIDEAN MINIMUM SPANNING TREE CONSTANT
立方体与环面模型以及欧氏最小生成树常数
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Patrick Jaillet - 通讯作者:
Patrick Jaillet
Probabilistic Traveling Salesman Problems
- DOI:
- 发表时间:
1985 - 期刊:
- 影响因子:0
- 作者:
Patrick Jaillet - 通讯作者:
Patrick Jaillet
A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited
- DOI:
10.1287/opre.36.6.929 - 发表时间:
1988-11 - 期刊:
- 影响因子:0
- 作者:
Patrick Jaillet - 通讯作者:
Patrick Jaillet
Robust Multi-product Pricing under General Extreme Value Models
一般极值模型下的鲁棒多产品定价
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Tien Mai;Patrick Jaillet - 通讯作者:
Patrick Jaillet
On properties of geometric random problems in the plane
平面上几何随机问题的性质
- DOI:
10.1007/bf02098279 - 发表时间:
1995 - 期刊:
- 影响因子:4.8
- 作者:
Patrick Jaillet - 通讯作者:
Patrick Jaillet
Patrick Jaillet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Jaillet', 18)}}的其他基金
NSF/USDOT: Collaborative Research: Impact of Real-time Carrier-shipper Interaction on Transportation System Performance
NSF/USDOT:合作研究:承运人与托运人的实时交互对运输系统性能的影响
- 批准号:
0230981 - 财政年份:2003
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Real-Time Vehicle Routing and Scheduling Problems
实时车辆路径和调度问题
- 批准号:
9713682 - 财政年份:1997
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Conference For Transportation Algorithms and Models; June 17-23, 1998, San Juan, Puerto Rico
交通算法和模型会议;
- 批准号:
9714428 - 财政年份:1997
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Dynamic optimization and experimental validation of a self-powered wrist-worn wearable device
自供电腕戴式可穿戴设备的动态优化与实验验证
- 批准号:
24K17226 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Dynamic Decision-Making Under Uncertainty via Distributionally Robust Optimization
职业:通过分布稳健优化在不确定性下进行动态决策
- 批准号:
2342505 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
CAREER: Static, Dynamic and Kinematic Analysis and Optimization of Tensegrity Structures through Cellular Morphogenesis
职业:通过细胞形态发生对张拉整体结构进行静态、动态和运动学分析和优化
- 批准号:
2238724 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
DESC: Type I: Dynamic Optimization for Leaps in Sustainability-Centric Computing System Design
DESC:类型 I:以可持续发展为中心的计算系统设计飞跃的动态优化
- 批准号:
2324707 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Performance and Optimization of Timber Assemblies Subjected to Near-Field Dynamic Loads
受近场动态载荷影响的木材组件的性能和优化
- 批准号:
DGECR-2022-00517 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Launch Supplement
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
- 批准号:
536637-2018 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Collaborative Research and Development Grants
Dynamic Fracture Characterization and Integrated Optimization of Enhanced Oil Recovery Performance in Tight Formations under Uncertainty
不确定性条件下致密地层动态裂缝表征及提高采收率综合优化
- 批准号:
RGPIN-2019-07150 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual
Generalization of Dynamic Metabolic Flux Models and their Application for Economic Optimization of Bioprocesses
动态代谢通量模型的推广及其在生物过程经济优化中的应用
- 批准号:
RGPIN-2019-04609 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Discovery Grants Program - Individual