A Model for Turbulence in Strongly Stratified Natural Flows
强分层自然流中的湍流模型
基本信息
- 批准号:1034221
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To improve the modeling of turbulence and mixing in strongly stratified natural flows such as lakes and oceans, the proposed work involves developing an analytical model based on rapid distortion theory (RDT). Although turbulence can be intense in parts of natural flows, strong stratification can reduce vertical transport and mixing in the interior of lakes and oceans. Turbulence models based on the Reynolds-averaged Navier-Stokes (RANS) equations have provided useful predictions of stratified flows; however, they require adjustment to account for the interaction of internal waves and turbulence, and models that employ the gradient-transport assumption cannot predict upgradient fluxes, which can affect transport in strongly stratified flows significantly.In contrast to RANS models, RDT is naturally suited for predicting turbulence in a strongly stratified flow. While the gradient-transport approximation works best for a stratified flow when the time scales of the turbulence are much smaller than the time scale of gravitational adjustment (i.e., weak stratification), RDT applies when the stratification is strong. Although RDT does not predict the vortex mode seen at large times in some studies, it has successfully predicted many features of strongly stratified flows, including upgradient fluxes and preferential transport of temperature in a heat-salt system. The proposed work exploits this success to elucidate the physics and improve the modeling of strongly stratified flows.The objectives of the proposed work are to (1) apply RDT to homogeneous turbulence in strong stratification to determine (a) the mixing efficiency and its dependence on molecular diffusivity, (b) the effects of time-varying forcing in sheared and unsheared flows, and (c) the evolution of turbulence in a velocity and density field modeled after internal waves and (2) extend RDT to increase its relevance for natural flows by (a) applying it to a patch of turbulence with and without shear and (b) investigating the effect of moderate stratification and developing and testing a turbulence model based on RDT. Work for the first objective involves straightforward, though important, extensions of previous applications. Along with applying previous research on RDT for inhomogeneous turbulence to a stratified patch, work for the second objective involves relaxing the assumption of strong stratification by analytically evaluating the neglected nonlinear terms and adding a variable eddy diffusivity, which will be computed from the RDT solution, to extend the RDT to moderate stratification.The intellectual merit of the proposed work stems from the success of RDT in reproducing key features of several stratified flows and the PI?s experience with RDT and mixing in stratified flows in general. The theoretical problems are designed to answer key questions for stratified flows (objective 1) as well as relax the assumptions behind RDT to increase its applicability objective 2). Results from this research are expected to complement current models of stratified flows and offer insights on how to improve them. The broader impacts include training a graduate student; involving undergraduates from Iowa State University's Program for Women in Science and Engineering in the research; conducting outreach to schools; continuing collaborations with Drs. Hideshi Hanazaki, Hidekatsu Yamazaki, and William Merryfield; and improving the parameterization of sub-grid scale processes in models of lakes and oceans. The last of these will be aided by collaborating with Dr. Merryfield, an ocean modeler.
为了提高湍流和混合在强烈分层的自然流动,如湖泊和海洋的建模,拟议的工作涉及开发一个基于快速畸变理论(RDT)的分析模型。虽然湍流在自然流动的某些部分可能很强烈,但强烈的分层可以减少湖泊和海洋内部的垂直运输和混合。基于雷诺平均纳维尔-斯托克斯(RANS)方程的湍流模型对分层流动提供了有用的预测;然而,它们需要进行调整以考虑内波和湍流的相互作用,并且采用梯度输送假设的模式不能预测梯度通量,这会显著影响强分层流中的输送。RDT自然适合于预测强分层流中的湍流。当湍流的时间尺度远小于重力调整的时间尺度时(即,弱分层),RDT在分层强时适用。虽然RDT不能预测在某些研究中大量出现的涡旋模式,但它成功地预测了强分层流的许多特征,包括热盐系统中的梯度通量和温度的优先输送。本文利用这一成功来阐明强分层流动的物理机制并改进其模拟方法。本文的目标是(1)将RDT应用于强分层中的均匀湍流,以确定(a)混合效率及其对分子扩散系数的依赖性,(B)剪切和非剪切流动中时变强迫的影响,(c)内波后模拟的速度和密度场中湍流的演化;(2)通过(a)将RDT应用于有和无剪切的湍流斑块以及(B)研究了中等层结的影响,并开发和测试了基于RDT的湍流模式。第一个目标的工作涉及直接的,虽然重要的,以前的应用程序的扩展。沿着将先前关于非均匀湍流RDT的研究应用于分层斑块,第二个目标的工作包括通过分析评估被忽略的非线性项并添加可变涡流扩散率来放松强分层的假设,该可变涡流扩散率将从RDT解计算,将RDT扩展到中等分层。建议工作的智力价值源于RDT在再现几个分层流的关键特征方面的成功,PI?在分层流中的RDT和混合方面的经验。这些理论问题旨在回答分层流的关键问题(目标1),以及放松RDT背后的假设,以增加其适用性目标2)。这项研究的结果预计将补充目前的分层流模型,并提供如何改进它们的见解。更广泛的影响包括培训一名研究生;让来自爱荷华州州立大学的女性科学与工程项目的本科生参与研究;向学校进行推广;继续与Hideshi Hanazaki,Hidekatsu Yamazaki和William Merryfield博士合作;以及改进湖泊和海洋模型中次网格尺度过程的参数化。最后一项工作将得到海洋模型专家梅里菲尔德博士的协助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris Rehmann其他文献
Chris Rehmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris Rehmann', 18)}}的其他基金
Predicting fate and transport of antibiotic resistance genes in streams
预测河流中抗生素抗性基因的命运和运输
- 批准号:
2241853 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Molecular Tagging Techniques for Stratified Flow: Application to Boundary Mixing
分层流的分子标记技术:在边界混合中的应用
- 批准号:
1067270 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Transport by Intrusions Generated by Boundary Mixing
边界混合产生的侵入传输
- 批准号:
0647253 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Mixing at a Sheared, Fingering Interface
在剪切、指法界面混合
- 批准号:
0117782 - 财政年份:2001
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Molecular Diffusivity Effects on Mixing in a Diffusively-Stable, Turbulent Flow
分子扩散率对扩散稳定湍流中混合的影响
- 批准号:
9977208 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
- 批准号:
2335760 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
- 批准号:
EP/Z000149/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Understanding Pulsatile Helical Flow: Scaling, Turbulence, and Helicity Control
了解脉动螺旋流:缩放、湍流和螺旋度控制
- 批准号:
2342517 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Characterization of Turbulence in Urban Environments for Wind Hazard Mitigation
职业:城市环境湍流特征以减轻风灾
- 批准号:
2340755 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant














{{item.name}}会员




