Revealing Structure via Dynamics: Biological Networks from Protein Folding to Food Webs

通过动力学揭示结构:从蛋白质折叠到食物网的生物网络

基本信息

  • 批准号:
    1038677
  • 负责人:
  • 金额:
    $ 66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

A principal goal of biological theory is to understand complex living systems in terms of their parts and the interactions between their parts. In this project, an ecologist, a protein physiologist and a mathematician will collaborate to develop new ways of understanding how highly interconnected biological systems change through time. Specifically, these investigators aim to develop a general theory of linear dynamics on complex biological networks. Surprisingly, a great variety of critically important biological phenomena at a wide range of scales is captured by linear or approximately linear dynamics on complex networks. By applying novel methods for coarse graining biological networks, this project will answer questions such as: how many functionally distinct moving parts does a given system have? How do quantities of interest, such as nutrients or information, move through a highly interconnected network? Which nodes or edges in such a network are the most important for transmission? Can we identify nodes whose removal has the greatest or smallest effect on the performance of the network?Developing a framework for general linear dynamics on complex biological networks will have a broad and deep impact on our ability to understand, predict and control critically important biological processes at a wide range of scales. In addition, this project will contribute to training students at the undergraduate, graduate and postdoctoral level to work across disciplines such as ecology, physiology and mathematics to deepen our understanding of complex biological systems.
生物学理论的一个主要目标是理解复杂的生命系统,包括它们的组成部分以及它们之间的相互作用。 在这个项目中,一位生态学家、一位蛋白质生理学家和一位数学家将合作开发新的方法来理解高度相互关联的生物系统如何随着时间的推移而变化。 具体来说,这些研究人员的目标是发展一个线性动力学的复杂生物网络的一般理论。 令人惊讶的是,在广泛的尺度上,各种各样的至关重要的生物现象都被复杂网络上的线性或近似线性动力学所捕获。 通过应用新的方法来粗粒度生物网络,该项目将回答这样的问题:一个给定的系统有多少功能不同的运动部件? 营养物或信息等感兴趣的量是如何在高度互联的网络中移动的? 在这样的网络中,哪些节点或边对传输最重要? 我们能否确定哪些节点的删除对网络性能的影响最大或最小?在复杂的生物网络上开发一个一般线性动力学的框架,将对我们在广泛的尺度上理解、预测和控制至关重要的生物过程的能力产生广泛而深刻的影响。 此外,该项目将有助于培养本科生,研究生和博士后水平的学生跨学科工作,如生态学,生理学和数学,以加深我们对复杂生物系统的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Snyder其他文献

Power models and the farm workers' struggle: A case study of the agribusiness vs. UFW conflict
  • DOI:
    10.1007/bf02390136
  • 发表时间:
    1979-05-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Edward J. Walsh;Robin Snyder
  • 通讯作者:
    Robin Snyder
Passive Learning: When the Media Environment Is the Message
被动学习:当媒体环境是信息时
  • DOI:
  • 发表时间:
    1984
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cliff Zukin;Robin Snyder
  • 通讯作者:
    Robin Snyder

Robin Snyder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Snyder', 18)}}的其他基金

Collaborative Research: A general approach to partitioning contributions from multiple drivers affecting individuals, populations, and communities
协作研究:划分影响个人、人口和社区的多个驱动因素贡献的通用方法
  • 批准号:
    1933612
  • 财政年份:
    2020
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
Collaborative Research: Integral Projection Models for Populations in Varying Environments: Construction and Analysis
合作研究:不同环境中人群的整体投影模型:构建和分析
  • 批准号:
    1354041
  • 财政年份:
    2014
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
UBM: Undergraduate Research at the Interface of Mathematics and Biology
UBM:数学与生物学交叉点的本科研究
  • 批准号:
    0634612
  • 财政年份:
    2007
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant

相似海外基金

Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
  • 批准号:
    24K20867
  • 财政年份:
    2024
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation on the Sub-structure development in HSA6 alloys to maximise strength via Thermomechanical simulations
通过热机械模拟研究 HSA6 合金的子结构开发以最大限度地提高强度
  • 批准号:
    2901174
  • 财政年份:
    2024
  • 资助金额:
    $ 66万
  • 项目类别:
    Studentship
Fabrication of omniphobic PVDF hollow fiber membrane with hierarchical structure via co-extrusion technology for anti-wetting and anti-fouling membrane distillation
共挤技术制备多级结构全疏PVDF中空纤维膜用于防润湿防污膜蒸馏
  • 批准号:
    23K19184
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Understanding the Internal Structure and Near-Storm Environments of Supercells via Innovative Analysis of Targeted Observation by Radars and UAS of Supercells (TORUS) Observations
通过对超级单体(TORUS)观测的雷达和无人机定向观测的创新分析,了解超级单体的内部结构和近风暴环境
  • 批准号:
    2312090
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
Research on high-density positive electrodes via low crystalline structure control
低晶结构控制高密度正极研究
  • 批准号:
    23H02068
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modification of baryon structure in nuclei studied via Lambda hyperons
通过 Lambda 超子研究原子核中重子结构的修饰
  • 批准号:
    23H00102
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Schubert Structure Constants via Kohnert Combinatorics
通过 Kohnert 组合学计算舒伯特结构常数
  • 批准号:
    2246785
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
AF: SMALL: Extending the Reach of Distribution Testing via Structure
AF:小:通过结构扩展分布测试的范围
  • 批准号:
    2310818
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Foundations of Robust Deep Learning via Data Geometry and Dyadic Structure
合作研究:CIF:媒介:通过数据几何和二元结构实现稳健深度学习的基础
  • 批准号:
    2212325
  • 财政年份:
    2022
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了