CBMS Regional Conference in the Mathematical Sciences-"Radial Basis Functions: Mathematical Developments and Applications"
CBMS数学科学区域会议-“径向基函数:数学发展与应用”
基本信息
- 批准号:1040883
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-01 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF/CBMS Regional Conference on Radial Basis Functions: Mathematical Developments and ApplicationsJune 20 - 24, 2011 University of Massachusetts Dartmouth RBF methods for the solution of partial differential equations have generated enthusiasm among researchers and made RBF methods an emerging topic. RBF methods have become popular for their mesh-tolerance, simplicity of implementation, and dimension-independence. The impact of RBF methods is evident by the large number of publications on RBF methods, which have appeared in the past decade in mathematics, physics, and engineering journals. It is a field, which has grown through significant collaborations across disciplines, and the open and free exchange of ideas and MATLAB research codes. RBF methods have also been successfully applied to large-scale geophysical computations, which demonstrate their great potential in simulation of physical problems. Despite their growing popularity, there have been few, if any, conferences dedicated to RBF methods. We propose to host the regional conference entitled *Radial Basis Functions: Mathematical Developments and Applications *. The mission of our RBF conference is to educate and motivate researchers (at all levels) and students in RBF methods, and to stimulate and inspire research in this field. The conference will feature ten talks by two leading researchers in this field, Bengt Fornberg at the Applied Mathematics Department of the University of Colorado at Boulder and Natasha Flyer at the Institute for Mathematics Applied to Geosciences of National Center for Atmospheric Research (NCAR). In addition, supplementary forty-minute talks will be given by attendees who are emerging leaders in this field, who will focus on topics ranging from the numerical analysis of RBF methods to their applications to large-scale physical problems. Additionally, an expository monograph based on ten lectures will be prepared and made available for non-participants, and a web site devoted to the conference will make it accessible to those who could not attend. The talks will be designed to appeal to both experts and novices, and to stimulate discussion and collaboration between the speakers and attendees about recent advances and open problems in RBF. This conference will provide an environment to communicate the latest research and development of RBF methods in recent years, and will attract a wider and more diverse group of researchers to undertake research in RBF methods and build a supportive community of RBF researchers.
NSF/CBMS径向基函数区域会议:数学发展与应用2011年6月20 - 24日马萨诸塞州大学达特茅斯 径向基函数方法求解偏微分方程引起了研究者的热情,使径向基函数方法成为一个新兴的课题。 径向基函数方法因其网格容差、实现简单和维数无关而变得流行。 径向基函数方法的影响是显而易见的,在过去的十年中,在数学,物理和工程杂志上出现了大量关于径向基函数方法的出版物。 这是一个领域,通过跨学科的重要合作,以及思想和MATLAB研究代码的开放和自由交流而发展起来。 径向基函数方法也已成功地应用于大规模的地球物理计算,这表明其在模拟物理问题的巨大潜力。 尽管它们越来越受欢迎,但很少有专门讨论RBF方法的会议。 我们提议主办题为“径向基函数:数学发展和应用”的区域会议。我们的RBF会议的使命是教育和激励研究人员(各级)和学生在RBF方法,并刺激和激励在这一领域的研究。 该会议将由该领域的两位主要研究人员进行十次演讲,他们是位于博尔德的科罗拉多大学应用数学系的Bengt Fornberg和国家大气研究中心(NCAR)地球科学应用数学研究所的Natasha Flyer。 此外,该领域的新兴领导者将提供40分钟的补充演讲,他们将专注于从RBF方法的数值分析到其在大规模物理问题中的应用等主题。此外,还将编写一份以10次讲座为基础的简要专题论文,并提供给非与会者,一个专门介绍会议的网站将向未能出席会议的人提供。 讲座将旨在吸引专家和新手,并激发演讲者和与会者之间关于RBF最新进展和开放问题的讨论和合作。 本次会议将提供一个交流近年来RBF方法最新研究和发展的环境,并将吸引更广泛和更多样化的研究人员进行RBF方法的研究,并建立一个支持RBF研究人员的社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saeja Kim其他文献
Saeja Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
- 批准号:
1933548 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Applications of Polynomial Systems - June 4-8, 2018
NSF/CBMS 数学科学区域会议 - 多项式系统的应用 - 2018 年 6 月 4-8 日
- 批准号:
1741730 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
CBMS Regional Research Conference on Topological Data Analysis
CBMS 拓扑数据分析区域研究会议
- 批准号:
1642637 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference on Higher Representation Theory-June 19-23, 2014
NSF/CBMS 更高表征理论区域会议 - 2014 年 6 月 19-23 日
- 批准号:
1347289 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Combinatorial Zeta and L-functions
NSF/CBMS 数学科学区域会议:组合 Zeta 和 L 函数
- 批准号:
1341413 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Inverse Scattering Theory for Transmission Eigenvalues -- May 27-May 31, 2014
NSF/CBMS 数学科学区域会议 -- 传输特征值的逆散射理论 -- 2014 年 5 月 27 日至 5 月 31 日
- 批准号:
1347475 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Supporting the Conference Series: NSF/CBMS Regional Research Conferences in the Mathematical Sciences
支持会议系列:NSF/CBMS 数学科学区域研究会议
- 批准号:
1338632 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - The Mathematics of the Social and Behavioral Sciences
NSF/CBMS 数学科学区域会议 - 社会和行为科学的数学
- 批准号:
1137949 - 财政年份:2012
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
- 批准号:
1137952 - 财政年份:2012
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant