EAGER: Exploring Compressive Sampling for Extreme-Scale Data Visualization

EAGER:探索超大规模数据可视化的压缩采样

基本信息

  • 批准号:
    1048508
  • 负责人:
  • 金额:
    $ 8.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

AbstractThis EAGER aims to provide practical evidence of feasibility for a larger project called instance-optimal sampling. The instance-optimal sampling is a foundational framework for optimal representation of extreme-scale (scattered, unstructured, and structured) datasets. Using the dense polytope packing algorithms, the instance-optimal sampling framework develops strategies for sampling a given dataset at the optimally minimal sampling rate. The instance-optimal representation is derived based on the multidimensional notion of Nyquist frequencies; therefore, this approach is best complemented with the compressive sampling (CS) methods that exploit the sparsity of a dataset to reduce the sampling rate significantly below the Nyquist rate with no loss of information.The main motivation in this research is that the synergy of compressive sampling and instance-optimal sampling would potentially allow the reduction of an extreme-scale dataset to sizes that are logarithmically proportional to number of samples in that dataset and linearly proportional to its sparsity. The research addresses the computational efficiency issue of sparse reconstruction for volumetric and time-varying datasets, which can lay the basis for applying CS to computer graphics problems. The main challenge is the computational cost of the reconstruction algorithm for 3-D or time-varying data. This research examines the feasibility of adopting a tensor-product approach to compressive sampling.
本文旨在为一个更大的项目--实例最优抽样提供可行性的实际证据。实例最优采样是极端规模(分散的、非结构化的和结构化的)数据集的最佳表示的基本框架。使用密集多面体填充算法,实例最优采样框架制定了以最佳最小采样率对给定数据集进行采样的策略。实例最优表示是基于Nyquist频率的多维概念,因此,该方法与压缩采样(CS)方法是最好的补充,压缩采样方法利用数据集的稀疏性,在不损失信息的情况下将采样率显著降低到显著低于Nyquist速率。本研究的主要动机是压缩采样和实例最优采样的协同作用潜在地允许将极端规模的数据集的大小减少到与该数据集中的样本数量成对数正比、与其稀疏成线性比例。研究了体和时变数据集的稀疏重建的计算效率问题,为将CS应用于计算机图形学问题奠定了基础。主要的挑战是三维或时变数据重建算法的计算成本。本研究探讨采用张量积方法进行压缩抽样的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alireza Entezari其他文献

Convolutional Forward Models for X-Ray Computed Tomography
X 射线计算机断层扫描的卷积前向模型
Possible changes in future reservoir inflow and hydropower production potential under CMIP6 GCMs projections for the Dez Dam, Western Iran
  • DOI:
    10.1007/s10584-024-03837-9
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Elaheh Asgari;Mohammad Sadegh Norouzi Nazar;Mohammad Baaghideh;Alireza Entezari;Mojtaba Shourian
  • 通讯作者:
    Mojtaba Shourian
Climatology of Tehran surface heat Island: a satellite-based spatial analysis
  • DOI:
    10.1038/s41598-025-95367-2
  • 发表时间:
    2025-03-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Motahhareh Zargari;Abbas Mofidi;Alireza Entezari;Mohammad Baaghideh
  • 通讯作者:
    Mohammad Baaghideh

Alireza Entezari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alireza Entezari', 18)}}的其他基金

CIF: Small: Efficient Model-Based Iterative Reconstruction For High Resolution CT
CIF:小型:基于模型的高效迭代重建高分辨率 CT
  • 批准号:
    2210866
  • 财政年份:
    2022
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
III: Small: Uncertainty Quantification and Propagation Analysis in The Visualization Pipeline
III:小:可视化管道中的不确定性量化和传播分析
  • 批准号:
    1617101
  • 财政年份:
    2016
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Continuing Grant
CIF: Small: Multidimensional Signal Processing With Box Splines
CIF:小:使用箱形样条进行多维信号处理
  • 批准号:
    1018149
  • 财政年份:
    2010
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
  • 批准号:
    502585
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
Exploring volcanic arcs as factories of critical minerals
探索火山弧作为关键矿物工厂
  • 批准号:
    FT230100230
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    ARC Future Fellowships
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
  • 批准号:
    ES/Y00860X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Fellowship
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Fellowship
Exploring factors affecting the disability pay gap
探讨影响伤残工资差距的因素
  • 批准号:
    ES/Z50242X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Fellowship
Women's mental illness in pregnancy: Exploring contact with secondary mental health services and links with offspring health and education outcomes
妇女妊娠期精神疾病:探索与二级心理健康服务的联系以及与后代健康和教育成果的联系
  • 批准号:
    ES/Z502492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Fellowship
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
  • 批准号:
    BB/Y000560/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Research Grant
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Exploring fire as medicine to revitalize cultural burning in the Upper Midwest
规划:FIRE-PLAN:探索火作为药物,以振兴中西部北部的文化燃烧
  • 批准号:
    2349282
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了