EAGER: Simulation-Aided Design and Synthesis of Bio-inspired Membranes for Water Desalination and Purification

EAGER:用于水淡化和净化的仿生膜的模拟辅助设计和合成

基本信息

  • 批准号:
    1049207
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Membranes are well suited to desalinate or purify water, while using little power. Innovation is required, however, as scarcity of pure, fresh water is a growing concern. To guide the design of new membranes, we propose to learn from protein channels in cell walls, some of which are remarkably efficient for separations such as water desalination. This EAGER proposal focuses primarily on the high-risk, high-reward endeavor that consists of the synthesis of nanoporous silica membranes with tunable, controlled pore sizes and functional groups of the desired chemistry and charge, tethered to the surface. These will form the basis for realizing a proof-of concept bio-inspired membrane. We will extend our preliminary molecular simulations of biological nanopores to obtain fundamental understanding in the physico-chemical principles that are responsible for their superior performance. These principles will then guide the design of the artificial membranes. Permeance and selectivity of this proof-of-concept will be tested to validate the methodology, and as a basis for further performance and optimization studies. Despite a vast literature on membrane separations, innovative chemical synthesis and molecular simulation-based design are rarely integrated. To date there is no validated, simulation-aided methodology to design artificial membranes based on the critical mechanisms underlying the performance of biological membranes. In a cell membrane, each aquaporin protein channel of nanoscale dimensions allows for the passage of three billion water molecules per second, while blocking protons from entering the cell. Discovering the principal molecular and cooperative interactions leading to the high permeation and selectivity of such pores is relevant to biology, but our main aim is to use the insights offered by these systems to implement an artificial membrane design for a purpose that mirrors that of the biological pores. To synthesize such a design is a non-trivial, high-risk effort, yet tremendous progress and our own experience in nanoscopically precise materials synthesis should allow us to implement structured designs, including ordered arrays of functionalized nanopores, as guided by the computations. This project merges innovation in materials science with state-of-the-art computational methods and guidance from biology to rationally design membranes for pressing water needs, using an approach that could extend to many other separation problems. More than a billion people live without access to safe drinking water, making more effective water desalination and purification one of the National Academy of Engineering Grand Challenges. This research is a step toward high-performance membranes that seek to address those needs in a transformative way. The simulation-based design methodology is applicable to membranes for other separation processes, in pharmaceutics, biochemical processing or the energy field. In addition, this project offers a multidisciplinary educational experience for undergraduates. The New Visions Math, Engineering, Technology and Science (METS) program will continue to be used to involve high school students and attract them to studies in science and engineering. International exchanges will be strengthened, including collaboration with colleagues in Germany and at the National Institute of Materials Science in Japan.
膜非常适合淡化或净化水,同时使用很少的电力。然而,由于纯净淡水的稀缺日益令人担忧,因此需要创新。为了指导新膜的设计,我们建议从细胞壁中的蛋白质通道中学习,其中一些对于水脱盐等分离非常有效。EAGER的建议主要集中在高风险,高回报的奋进,包括纳米多孔二氧化硅膜的合成与可调,控制孔径和所需的化学和电荷的官能团,拴在表面。这些将形成实现概念验证生物启发膜的基础。我们将扩展我们的生物纳米孔的初步分子模拟,以获得基本的物理化学原理,负责其上级性能的理解。这些原则将指导人工膜的设计。渗透性和选择性的概念验证将进行测试,以验证方法,并作为进一步的性能和优化研究的基础。尽管有大量关于膜分离的文献,但创新的化学合成和基于分子模拟的设计很少被整合。到目前为止,还没有经过验证的,模拟辅助的方法来设计人工膜的基础上的关键机制的生物膜的性能。在细胞膜中,每个纳米尺度的水通道蛋白质通道允许每秒通过30亿个水分子,同时阻止质子进入细胞。发现导致这种孔的高渗透性和选择性的主要分子和合作相互作用与生物学有关,但我们的主要目的是使用这些系统提供的见解来实现人造膜设计,以反映生物孔的目的。合成这样的设计是一个不平凡的,高风险的努力,但巨大的进步和我们自己的经验,在纳米级精确的材料合成应该允许我们实现结构化的设计,包括有序阵列的功能化纳米孔,由计算指导。该项目将材料科学的创新与最先进的计算方法和生物学的指导相结合,以合理设计膜来满足紧迫的水需求,使用的方法可以扩展到许多其他分离问题。超过10亿人无法获得安全的饮用水,这使得更有效的水淡化和净化成为美国国家工程院面临的重大挑战之一。这项研究是迈向高性能膜的一步,旨在以变革的方式满足这些需求。基于模拟的设计方法适用于其他分离过程,制药,生化处理或能源领域的膜。此外,该项目为本科生提供了多学科的教育经验。新视野数学,工程,技术和科学(METS)计划将继续被用来吸引高中学生,并吸引他们在科学和工程研究。将加强国际交流,包括与德国和日本国家材料科学研究所的同事合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc-Olivier Coppens其他文献

An experimental study of heat transfer in pulsed fluidised beds via infrared thermography
通过红外热成像技术对脉冲流化床中传热的实验研究
  • DOI:
    10.1016/j.cej.2025.161548
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Shuxian Jiang;Linlin Xu;Kaiqiao Wu;Victor Francia;Marc-Olivier Coppens
  • 通讯作者:
    Marc-Olivier Coppens
LION Data: A roaring transformation in data visualisation
LION数据:数据可视化的一次震撼转型
  • DOI:
    10.1016/j.compchemeng.2025.109153
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Lucy Todd;Arthur Fordham;Ben Deacon;Marc-Olivier Coppens
  • 通讯作者:
    Marc-Olivier Coppens
Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids
  • DOI:
    10.1007/s10450-021-00314-y
  • 发表时间:
    2021-04-22
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Brandon C. Bukowski;Frerich J. Keil;Peter I. Ravikovitch;German Sastre;Randall Q. Snurr;Marc-Olivier Coppens
  • 通讯作者:
    Marc-Olivier Coppens
Optimizing spatial pore-size and porosity distributions of adsorbents for enhanced adsorption and desorption performance
优化吸附剂的空间孔径和孔隙率分布,以增强吸附和解吸性能
  • DOI:
    10.1016/j.ces.2015.04.024
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Guanghua Ye;Xuezhi Duan;Kake Zhu;Xinggui Zhou;Marc-Olivier Coppens;Weikang Yuan
  • 通讯作者:
    Weikang Yuan
Dynamic Monte Carlo simulations of binary self-diffusion in ZSM-5
  • DOI:
    10.1016/j.micromeso.2009.03.034
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xin Liu;David Newsome;Marc-Olivier Coppens
  • 通讯作者:
    Marc-Olivier Coppens

Marc-Olivier Coppens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc-Olivier Coppens', 18)}}的其他基金

Frontier Engineering: Progression Grant in Nature-Inspired Engineering
前沿工程:自然启发工程进步补助金
  • 批准号:
    EP/S03305X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Conference: Diffusion Fundamentals IV - A Multidisciplinary Conference on the Fundamentals of Diffusion and its Applications; Troy, NY, August 21 - 24, 2011
会议:扩散基础 IV - 扩散基础及其应用的多学科会议;
  • 批准号:
    1138436
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

SBIR Phase I: Computer Aided Design and Simulation Software for Origami
SBIR 第一阶段:折纸计算机辅助设计和仿真软件
  • 批准号:
    2233133
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AI aided turbulent combustion modeling based on advanced laser diagnostics and direct numerical simulation data science
基于先进激光诊断和直接数值模拟数据科学的人工智能辅助湍流燃烧建模
  • 批准号:
    20H00224
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fit-for-purpose occupant behaviour modelling for simulation-aided occupant-centric building design
适合用途的居住者行为建模,用于模拟辅助的以居住者为中心的建筑设计
  • 批准号:
    2397781
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Fit-for-purpose occupant behaviour modelling for simulation-aided occupant-centric building design
适合用途的居住者行为建模,用于模拟辅助的以居住者为中心的建筑设计
  • 批准号:
    2421819
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Advancement of Numerical Simulation of Deformed Human Abdominal Organs for Computer Aided Surgery
人体腹部畸形器官计算机辅助手术数值模拟研究进展
  • 批准号:
    16H03914
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a preoperative computer-aided surgical simulation system for mandibular reconstruction
下颌骨重建术前计算机辅助手术模拟系统的开发
  • 批准号:
    15K20485
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Shape aware Computer Aided Tolerancing: A new methodical and computational framework for the assembly and mobility simulation based on Skin Model Shapes (ShapeCAN)
形状感知计算机辅助公差:基于蒙皮模型形状 (ShapeCAN) 的装配和移动模拟的新方法和计算框架
  • 批准号:
    278389853
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grants
Multi-core embedded systems: computer aided NoC/MPSoC design and simulation techniques
多核嵌入式系统:计算机辅助NoC/MPSoC设计和仿真技术
  • 批准号:
    238991-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-core embedded systems: computer aided NoC/MPSoC design and simulation techniques
多核嵌入式系统:计算机辅助NoC/MPSoC设计和仿真技术
  • 批准号:
    238991-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-core embedded systems: computer aided NoC/MPSoC design and simulation techniques
多核嵌入式系统:计算机辅助NoC/MPSoC设计和仿真技术
  • 批准号:
    238991-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了