CAREER:Nanostructured Binary and Ternary Phosphide Semiconductors for Photoelectrochemical Energy Conversion/Storage

职业:用于光电化学能量转换/存储的纳米结构二元和三元磷化物半导体

基本信息

项目摘要

TECHNICAL SUMMARY The Solid State Materials and Chemistry Program within the Division of Materials Research supports the activities of this CAREER award. The objectives of this work are to explore, understand, and apply high aspect ratio, nanostructured binary and ternary phosphide semiconductors as materials for solar energy capture, conversion, and storage. This work specifically targets the synthesis of diamond-like, earth-abundant phosphides such as GaP, BP, ZnSiP2, ZnGeP2, ZnSnP2, CdSiP2, CdGeP2, and CdSnP2, semiconductors which have been largely unexplored as photoelectrode materials in photoelectrochemical systems. This work will demonstrate that the perceived limitations commonly ascribed to all of these materials are extrinsic in nature and can be overcome by judicious design and tailoring of their morphologies. The operation of phosphide alloys for solar energy applications will be understood through individual nanowire measurements, steady-state photoelectrochemical measurements of ensemble films, and transient photoresponse measurements. These data will provide a more complete understanding of their optoelectronic properties when prepared as nanowires with high aspect ratios. This work will both demonstrate that nanostructured phosphide binary and ternary alloy semiconductors have the capacity to fill the existing materials gap currently inhibiting the construction of scalable, fuel-forming photoelectrochemical cells and that the development of these materials also affords the opportunity to explore alternative dye-sensitized photoelectrode designs. NON-TECHNICAL SUMMARY: The broad goals of this project are to develop phosphide materials and material interfaces that could be used in solar energy conversion/storage technologies that have the potential to profoundly influence energy usage and distribution at a global scale. The research will focus on a detailed analyses of the effect that the interplay between material composition and morphology has on the ability to capture, convert, and utilize solar energy. Postdoctoral fellows, graduate students, and undergraduate students involved in these activities will be trained and skilled in materials characterization techniques, semiconductor device physics, and surface analytical techniques directly relevant to the fields of energy conversion/storage. The project will also feature energy-themed outreach activities designed to seed new and long-term interactions between the Department of Chemistry at the University of Michigan and Detroit area middle school students. The goals of these activities for middle school students are to make the science behind the invention of cleaner, safer, and more affordable renewable energy technologies more real, tangible, and enticing and to highlight promising career options in energy sciences within the state of Michigan.
材料研究部内的固态材料和化学计划支持该职业奖的活动。 这项工作的目标是探索,理解和应用高纵横比,纳米结构的二元和三元磷化物半导体作为太阳能捕获,转换和存储的材料。 这项工作专门针对合成类金刚石,地球丰富的磷化物,如GaP,BP,ZnSiP 2,ZnGeP 2,ZnSnP 2,CdSiP 2,CdGeP 2和CdSnP 2,这些半导体在光电化学系统中作为光电极材料在很大程度上尚未开发。 这项工作将表明,通常归因于所有这些材料的感知限制是外在的性质,可以克服明智的设计和剪裁其形态。 磷化物合金的太阳能应用的操作将通过单独的纳米线测量,稳态光电化学测量的合奏膜,和瞬态光响应测量。 这些数据将提供一个更完整的了解其光电性能时,制备为纳米线具有高的纵横比。 这项工作将证明,纳米结构磷化物二元和三元合金半导体有能力填补目前抑制可扩展的燃料形成光电化学电池建设的现有材料缺口,这些材料的发展也提供了探索替代染料敏化光电极设计的机会。 非技术性总结:该项目的主要目标是开发磷化物材料和材料界面,可用于太阳能转换/存储技术,这些技术有可能在全球范围内深刻影响能源的使用和分配。 该研究将侧重于详细分析材料成分和形态之间的相互作用对捕获,转换和利用太阳能的能力的影响。 参与这些活动的博士后研究员,研究生和本科生将接受材料表征技术,半导体器件物理学和与能量转换/存储领域直接相关的表面分析技术的培训和技能。 该项目还将开展以能源为主题的外联活动,旨在促进密歇根大学化学系与底特律地区中学生之间新的长期互动。 这些活动的中学生的目标是使科学背后的发明更清洁,更安全,更负担得起的可再生能源技术更真实的,有形的,诱人的,并突出在密歇根州内的能源科学有前途的职业选择。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Maldonado其他文献

Synthesis of photoactive ZnSnP2 semiconductor nanowires
  • DOI:
    10.1557/jmr.2015.195
  • 发表时间:
    2015-07-27
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Sudarat Lee;Eli Fahrenkrug;Stephen Maldonado
  • 通讯作者:
    Stephen Maldonado
Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials
在光电化学材料的设计中,绝对带边能量被过度强调了。
  • DOI:
    10.1038/s41929-024-01161-0
  • 发表时间:
    2024-06-26
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Aaron J. Kaufman;Adam C. Nielander;Gerald J. Meyer;Stephen Maldonado;Shane Ardo;Shannon W. Boettcher
  • 通讯作者:
    Shannon W. Boettcher
Electrochemical Liquid‐Liquid‐Solid Growth of Ag‐In Crystals with Liquid Indium Alloy Electrodes
液态铟合金电极电化学液-液-固Ag-In晶体生长
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Henry Wu;Joshua P. Hazelnis;Stephen Maldonado
  • 通讯作者:
    Stephen Maldonado
Thalamic terminal fields of individual axons from the ventral part of the dentate nucleus of the cerebellum in Macaca mulatta
猕猴小脑齿状核腹侧个别轴突的丘脑终场
  • DOI:
    10.1002/(sici)1096-9861(20000605)421:3<412::aid-cne9>3.0.co;2-z
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Alicja Mason;I. Ilinsky;Stephen Maldonado;K. Kultas‐ilinsky
  • 通讯作者:
    K. Kultas‐ilinsky

Stephen Maldonado的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Maldonado', 18)}}的其他基金

Electrochemical Liquid-Liquid-Solid Growth of Intermetallic Nanocrystals from Liquid Metal Alloys
液态金属合金金属间纳米晶的电化学液-液-固生长
  • 批准号:
    2106315
  • 财政年份:
    2021
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Standard Grant
In-Situ Studies of the Growth of Nanostructured Covalent Semiconductors by Electrochemical Liquid-Liquid-Solid Processes
通过电化学液-液-固过程生长纳米结构共价半导体的原位研究
  • 批准号:
    1807755
  • 财政年份:
    2018
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Standard Grant
Direct Electrodeposition of Crystalline Groups IV and III-V Semiconductors by Electrochemical Liquid-Liquid-Solid Growth
通过电化学液-液-固生长直接电沉积 IV 族和 III-V 族晶体半导体
  • 批准号:
    1505635
  • 财政年份:
    2015
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Standard Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
  • 批准号:
    DE240100917
  • 财政年份:
    2024
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Discovery Early Career Researcher Award
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
  • 批准号:
    2335588
  • 财政年份:
    2024
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Standard Grant
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W022451/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Research Grant
Nanostructured Silicon-Based Wearable and Implantable Biosensors
纳米结构硅基可穿戴和植入式生物传感器
  • 批准号:
    FL220100185
  • 财政年份:
    2023
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Australian Laureate Fellowships
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
  • 批准号:
    23H00234
  • 财政年份:
    2023
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
  • 批准号:
    10602823
  • 财政年份:
    2023
  • 资助金额:
    $ 59.74万
  • 项目类别:
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W024284/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Research Grant
Development of Nanostructured Scaffolds for Stem Cell Culture to Directly Regulate Cellular Functions via Natural Polysaccharide Nanofibers
开发用于干细胞培养的纳米结构支架,通过天然多糖纳米纤维直接调节细胞功能
  • 批准号:
    23H00345
  • 财政年份:
    2023
  • 资助金额:
    $ 59.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了