CAREER: An Axiomatic Basis for Statistical Privacy
职业:统计隐私的公理基础
基本信息
- 批准号:1054389
- 负责人:
- 金额:$ 42.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical privacy is the art of releasing the datasets that provide useful information about population trends without revealing private information about any individual. Recent high-profile attacks on datasets released by AOL and Netflix demonstrate the need for rigorous application-specific privacy definitions to guide the anonymization of data. The goal of this project is to develop modular components, called privacy axioms, that can be chained together to create customized privacy definitions and anonymized data for statistical privacy applications. Such modularity can enable data curators without extensive expertise in statistical privacy to release anonymized data while providing privacy guarantees that are more interpretable and reliable.Intellectual merit: this project is designed to provide a unifying framework for statistical privacy that can bring about a deeper understanding of privacy issues and provide guidance for the safe anonymization and release of sensitive data. In addition to theoretical developments, this research plan also targets specific existing applications at Penn State and the U.S. Census Bureau.Broader impact: the systematic approach to privacy pursued by this project can enable access to and analysis of anonymized data in domains where access to data is otherwise heavily restricted. This project aims to build upon the investigator's prior experience with outreach programs such as the Summer Research Opportunities Program (SROP) by involving undergraduates in the proposed research. To prepare students for future work that requires analysis of anonymized data, this research is also being integrated into machine learning courses at Penn State.For further information see the project web site at the URL:http://www.cse.psu.edu/~dkifer/axiomatizingprivacy.html
统计隐私是发布数据集的艺术,这些数据集提供有关人口趋势的有用信息,而不会泄露任何个人的私人信息。最近AOL和Netflix发布的针对数据集的高调攻击表明,需要严格的特定于应用程序的隐私定义来指导数据的匿名化。该项目的目标是开发模块化组件,称为隐私公理,可以链接在一起,为统计隐私应用程序创建定制的隐私定义和匿名数据。这种模块化可以使在统计隐私方面没有广泛专业知识的数据管理者能够发布匿名数据,同时提供更易于解释和可靠的隐私保障。智力优势:该项目旨在为统计隐私提供一个统一的框架,可以加深对隐私问题的理解,并为敏感数据的安全匿名和发布提供指导。除了理论上的发展,该研究计划还针对宾夕法尼亚州立大学和美国人口普查局的特定现有应用。更广泛的影响:该项目所追求的系统性隐私方法可以在数据访问受到严格限制的领域中访问和分析匿名数据。该项目旨在建立在调查员的外联计划,如暑期研究机会计划(SROP)的经验,涉及大学生在拟议的研究。为了让学生为未来需要分析匿名数据的工作做好准备,这项研究也被整合到宾夕法尼亚州立大学的机器学习课程中。http://www.cse.psu.edu/~dkifer/axiomatizingprivacy.html
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting Outliers in Data with Correlated Measures
- DOI:10.1145/3269206.3271798
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Yu-Hsuan Kuo;Z. Li;Daniel Kifer
- 通讯作者:Yu-Hsuan Kuo;Z. Li;Daniel Kifer
Differentially Private Hierarchical Count-of-Counts Histograms
- DOI:10.14778/3236187.3236202
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Yu-Hsuan Kuo;Cho-Chun Chiu;Daniel Kifer;Michael Hay;Ashwin Machanavajjhala
- 通讯作者:Yu-Hsuan Kuo;Cho-Chun Chiu;Daniel Kifer;Michael Hay;Ashwin Machanavajjhala
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kifer其他文献
Crawler
履带式
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kenneth A. Ross;C. S. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;Hans;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;W. M. P. Aalst;C. Dyreson;P. Mitra;Ian H. Witten;Bing Liu;Charu C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;Chunhua Weng;A. Wright;Amnon Shabo (Shvo);Dan Russler;R. A. Rocha;Yves A. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;Michael Vassilakopoulos;Dimitrios Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;Michalis Vazirgiannis;Ian Davidson;Sunita Sarawagi;Liam Peyton;Gregory D. Speegle;Victor Vianu;Dirk Van Gucht;Opher Etzion;Francisco Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;Ouri Wolfson;Peter Scheuermann;Chitra Dorai;Michael Weiner;A. Borgida;J. Mylopoulos;Gottfried Vossen;A. Reuter;Val Tannen;S. Elnikety;Alan Fekete;L. Bertossi;F. Geerts;Wenfei Fan;T. Westerveld;Cathal Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;Kyriakos Mouratidis;Jeffrey Xu Yu;Yong Yao;John F. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;Aniruddha S. Gokhale;Mourad Ouzzani;Brahim Medjahed;Ahmed K. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;Theo Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;Torben Bach Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen - 通讯作者:
Lei Chen
On the Tensor Representation and Algebraic Homomorphism of the Neural State Turing Machine
神经状态图灵机的张量表示与代数同态
- DOI:
10.48550/arxiv.2309.14690 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Mali;Alexander Ororbia;Daniel Kifer;L. Giles - 通讯作者:
L. Giles
Attacks on privacy and deFinetti's theorem
- DOI:
10.1145/1559845.1559861 - 发表时间:
2009-06 - 期刊:
- 影响因子:0
- 作者:
Daniel Kifer - 通讯作者:
Daniel Kifer
Investigating Symbolic Capabilities of Large Language Models
研究大型语言模型的符号功能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Neisarg Dave;Daniel Kifer;C. L. Giles;A. Mali - 通讯作者:
A. Mali
Revisiting Differentially Private Hypothesis Tests for Categorical Data
重新审视分类数据的差分隐私假设检验
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yue Wang;Jaewoo Lee;Daniel Kifer - 通讯作者:
Daniel Kifer
Daniel Kifer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kifer', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 42.95万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: New Techniques for Optimizing Accuracy in Differential Privacy Applications
SaTC:核心:小型:优化差异隐私应用准确性的新技术
- 批准号:
1931686 - 财政年份:2019
- 资助金额:
$ 42.95万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Developing for Differential Privacy with Formal Methods and Counterexamples
SaTC:核心:媒介:使用正式方法和反例开发差异化隐私
- 批准号:
1702760 - 财政年份:2017
- 资助金额:
$ 42.95万 - 项目类别:
Standard Grant
TWC SBES: Medium: Utility for Private Data Sharing in Social Science
TWC SBES:媒介:社会科学中私人数据共享的实用程序
- 批准号:
1228669 - 财政年份:2012
- 资助金额:
$ 42.95万 - 项目类别:
Standard Grant
相似海外基金
Axiomatic analysis of social welfare evaluation under existential risk
存在风险下社会福利评价的公理分析
- 批准号:
23K01316 - 财政年份:2023
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Axiomatic Improvements to Novel Group Decision Making Processes
新颖的群体决策过程的公理改进
- 批准号:
547489-2020 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Axiomatic study of accounting standards by cooperative game theory
合作博弈论会计准则的公理化研究
- 批准号:
22K01790 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Axiomatic Approach to Information Acquisition under Ambiguity
歧义下信息获取的公理化方法
- 批准号:
21K01386 - 财政年份:2021
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Axiomatic Improvements to Novel Group Decision Making Processes
新颖的群体决策过程的公理改进
- 批准号:
547489-2020 - 财政年份:2021
- 资助金额:
$ 42.95万 - 项目类别:
Postgraduate Scholarships - Doctoral
Axiomatic Improvements to Novel Group Decision Making Processes
新颖的群体决策过程的公理改进
- 批准号:
547489-2020 - 财政年份:2020
- 资助金额:
$ 42.95万 - 项目类别:
Postgraduate Scholarships - Doctoral
Establishing the contemporary sociology of time: Conceptions of social time elucidated via integration of axiomatic method and theoretical, historical, and applied studies
建立当代时间社会学:通过公理方法与理论、历史和应用研究的结合阐明社会时间的概念
- 批准号:
19K02145 - 财政年份:2019
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An axiomatic approach to classical field theory
经典场论的公理化方法
- 批准号:
526745-2018 - 财政年份:2018
- 资助金额:
$ 42.95万 - 项目类别:
University Undergraduate Student Research Awards
Axiomatic analysis of intergenerational equity with variable population size and sustainability
人口规模可变和可持续性的代际公平的公理分析
- 批准号:
16K17090 - 财政年份:2016
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
MathScheme: Integrating axiomatic and algorithmic mathematics
MathScheme:集成公理数学和算法数学
- 批准号:
227796-2010 - 财政年份:2014
- 资助金额:
$ 42.95万 - 项目类别:
Discovery Grants Program - Individual